What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Aug 25, 2025
Abstract:Serendipity in recommender systems (RSs) has attracted increasing attention as a concept that enhances user satisfaction by presenting unexpected and useful items. However, evaluating serendipitous performance remains challenging because its ground truth is generally unobservable. The existing offline metrics often depend on ambiguous definitions or are tailored to specific datasets and RSs, thereby limiting their generalizability. To address this issue, we propose a universally applicable evaluation framework that leverages large language models (LLMs) known for their extensive knowledge and reasoning capabilities, as evaluators. First, to improve the evaluation performance of the proposed framework, we assessed the serendipity prediction accuracy of LLMs using four different prompt strategies on a dataset containing user-annotated serendipitous ground truth and found that the chain-of-thought prompt achieved the highest accuracy. Next, we re-evaluated the serendipitous performance of both serendipity-oriented and general RSs using the proposed framework on three commonly used real-world datasets, without the ground truth. The results indicated that there was no serendipity-oriented RS that consistently outperformed across all datasets, and even a general RS sometimes achieved higher performance than the serendipity-oriented RS.
* The 34th ACM International Conference on Information and Knowledge
Management (CIKM 2025)
Via

Aug 25, 2025
Abstract:Imagine decision-makers uploading data and, within minutes, receiving clear, actionable insights delivered straight to their fingertips. That is the promise of the AI Data Scientist, an autonomous Agent powered by large language models (LLMs) that closes the gap between evidence and action. Rather than simply writing code or responding to prompts, it reasons through questions, tests ideas, and delivers end-to-end insights at a pace far beyond traditional workflows. Guided by the scientific tenet of the hypothesis, this Agent uncovers explanatory patterns in data, evaluates their statistical significance, and uses them to inform predictive modeling. It then translates these results into recommendations that are both rigorous and accessible. At the core of the AI Data Scientist is a team of specialized LLM Subagents, each responsible for a distinct task such as data cleaning, statistical testing, validation, and plain-language communication. These Subagents write their own code, reason about causality, and identify when additional data is needed to support sound conclusions. Together, they achieve in minutes what might otherwise take days or weeks, enabling a new kind of interaction that makes deep data science both accessible and actionable.
Via

Aug 25, 2025
Abstract:Modern Code Review (MCR) is a standard practice in software engineering, yet it demands substantial time and resource investments. Recent research has increasingly explored automating core review tasks using machine learning (ML) and deep learning (DL). As a result, there is substantial variability in task definitions, datasets, and evaluation procedures. This study provides the first comprehensive analysis of MCR automation research, aiming to characterize the field's evolution, formalize learning tasks, highlight methodological challenges, and offer actionable recommendations to guide future research. Focusing on the primary code review tasks, we systematically surveyed 691 publications and identified 24 relevant studies published between May 2015 and April 2024. Each study was analyzed in terms of tasks, models, metrics, baselines, results, validity concerns, and artifact availability. In particular, our analysis reveals significant potential for standardization, including 48 task metric combinations, 22 of which were unique to their original paper, and limited dataset reuse. We highlight challenges and derive concrete recommendations for examples such as the temporal bias threat, which are rarely addressed so far. Our work contributes to a clearer overview of the field, supports the framing of new research, helps to avoid pitfalls, and promotes greater standardization in evaluation practices.
* Preprint currently under review
Via

Aug 25, 2025
Abstract:The rapid evolution of e-commerce has exposed the limitations of traditional product retrieval systems in managing complex, multi-turn user interactions. Recent advances in multimodal generative retrieval -- particularly those leveraging multimodal large language models (MLLMs) as retrievers -- have shown promise. However, most existing methods are tailored to single-turn scenarios and struggle to model the evolving intent and iterative nature of multi-turn dialogues when applied naively. Concurrently, test-time scaling has emerged as a powerful paradigm for improving large language model (LLM) performance through iterative inference-time refinement. Yet, its effectiveness typically relies on two conditions: (1) a well-defined problem space (e.g., mathematical reasoning), and (2) the model's ability to self-correct -- conditions that are rarely met in conversational product search. In this setting, user queries are often ambiguous and evolving, and MLLMs alone have difficulty grounding responses in a fixed product corpus. Motivated by these challenges, we propose a novel framework that introduces test-time scaling into conversational multimodal product retrieval. Our approach builds on a generative retriever, further augmented with a test-time reranking (TTR) mechanism that improves retrieval accuracy and better aligns results with evolving user intent throughout the dialogue. Experiments across multiple benchmarks show consistent improvements, with average gains of 14.5 points in MRR and 10.6 points in nDCG@1.
Via

Aug 24, 2025
Abstract:Machine learning models increasingly influence decisions in high-stakes settings such as finance, law and hiring, driving the need for transparent, interpretable outcomes. However, while explainable approaches can help understand the decisions being made, they may inadvertently reveal the underlying proprietary algorithm: an undesirable outcome for many practitioners. Consequently, it is crucial to balance meaningful transparency with a form of recourse that clarifies why a decision was made and offers actionable steps following which a favorable outcome can be obtained. Counterfactual explanations offer a powerful mechanism to address this need by showing how specific input changes lead to a more favorable prediction. We propose Model-Agnostic Causally Constrained Counterfactual Generation (MC3G), a novel framework that tackles limitations in the existing counterfactual methods. First, MC3G is model-agnostic: it approximates any black-box model using an explainable rule-based surrogate model. Second, this surrogate is used to generate counterfactuals that produce a favourable outcome for the original underlying black box model. Third, MC3G refines cost computation by excluding the ``effort" associated with feature changes that occur automatically due to causal dependencies. By focusing only on user-initiated changes, MC3G provides a more realistic and fair representation of the effort needed to achieve a favourable outcome. We show that MC3G delivers more interpretable and actionable counterfactual recommendations compared to existing techniques all while having a lower cost. Our findings highlight MC3G's potential to enhance transparency, accountability, and practical utility in decision-making processes that incorporate machine-learning approaches.
Via

Aug 24, 2025
Abstract:We present SEER-VAR, a novel framework for egocentric vehicle-based augmented reality (AR) that unifies semantic decomposition, Context-Aware SLAM Branches (CASB), and LLM-driven recommendation. Unlike existing systems that assume static or single-view settings, SEER-VAR dynamically separates cabin and road scenes via depth-guided vision-language grounding. Two SLAM branches track egocentric motion in each context, while a GPT-based module generates context-aware overlays such as dashboard cues and hazard alerts. To support evaluation, we introduce EgoSLAM-Drive, a real-world dataset featuring synchronized egocentric views, 6DoF ground-truth poses, and AR annotations across diverse driving scenarios. Experiments demonstrate that SEER-VAR achieves robust spatial alignment and perceptually coherent AR rendering across varied environments. As one of the first to explore LLM-based AR recommendation in egocentric driving, we address the lack of comparable systems through structured prompting and detailed user studies. Results show that SEER-VAR enhances perceived scene understanding, overlay relevance, and driver ease, providing an effective foundation for future research in this direction. Code and dataset will be made open source.
Via

Aug 24, 2025
Abstract:One of the essential issues in decision problems and preference modeling is the number of comparisons and their pattern to ask from the decision maker. We focus on the optimal patterns of pairwise comparisons and the sequence including the most (close to) optimal cases based on the results of a color selection experiment. In the test, six colors (red, green, blue, magenta, turquoise, yellow) were evaluated with pairwise comparisons as well as in a direct manner, on color-calibrated tablets in ISO standardized sensory test booths of a sensory laboratory. All the possible patterns of comparisons resulting in a connected representing graph were evaluated against the complete data based on 301 individual's pairwise comparison matrices (PCMs) using the logarithmic least squares weight calculation technique. It is shown that the empirical results, i.e., the empirical distributions of the elements of PCMs, are quite similar to the former simulated outcomes from the literature. The obtained empirically optimal patterns of comparisons were the best or the second best in the former simulations as well, while the sequence of comparisons that contains the most (close to) optimal patterns is exactly the same. In order to enhance the applicability of the results, besides the presentation of graph of graphs, and the representing graphs of the patterns that describe the proposed sequence of comparisons themselves, the recommendations are also detailed in a table format as well as in a Java application.
Via

Aug 24, 2025
Abstract:Classification in the context of multi-label data streams represents a challenge that has attracted significant attention due to its high real-world applicability. However, this task faces problems inherent to dynamic environments, such as the continuous arrival of data at high speed and volume, changes in the data distribution (concept drift), the emergence of new labels (concept evolution), and the latency in the arrival of ground truth labels. This systematic literature review presents an in-depth analysis of multi-label data stream classification proposals. We characterize the latest methods in the literature, providing a comprehensive overview, building a thorough hierarchy, and discussing how the proposals approach each problem. Furthermore, we discuss the adopted evaluation strategies and analyze the methods' asymptotic complexity and resource consumption. Finally, we identify the main gaps and offer recommendations for future research directions in the field.
* 48 pages, 12 figures
Via

Aug 24, 2025
Abstract:Popularity bias is a well-known challenge in recommender systems, where a small number of popular items receive disproportionate attention, while the majority of less popular items are largely overlooked. This imbalance often results in reduced recommendation quality and unfair exposure of items. Although existing mitigation techniques address this bias to some extent, they typically lack transparency in how they operate. In this paper, we propose a post-hoc method using a Sparse Autoencoder (SAE) to interpret and mitigate popularity bias in deep recommendation models. The SAE is trained to replicate a pre-trained model's behavior while enabling neuron-level interpretability. By introducing synthetic users with clear preferences for either popular or unpopular items, we identify neurons encoding popularity signals based on their activation patterns. We then adjust the activations of the most biased neurons to steer recommendations toward fairer exposure. Experiments on two public datasets using a sequential recommendation model show that our method significantly improves fairness with minimal impact on accuracy. Moreover, it offers interpretability and fine-grained control over the fairness-accuracy trade-off.
Via

Aug 23, 2025
Abstract:In large-scale recommender systems, ultra-long user behavior sequences encode rich signals of evolving interests. Extending sequence length generally improves accuracy, but directly modeling such sequences in production is infeasible due to latency and memory constraints. Existing solutions fall into two categories: (1) top-k retrieval, which truncates the sequence and may discard most attention mass when L >> k; and (2) encoder-based compression, which preserves coverage but often over-compresses and fails to incorporate key context such as temporal gaps or target-aware signals. Neither class achieves a good balance of low-loss compression, context awareness, and efficiency. We propose VQL, a context-aware Vector Quantization Attention framework for ultra-long behavior modeling, with three innovations. (1) Key-only quantization: only attention keys are quantized, while values remain intact; we prove that softmax normalization yields an error bound independent of sequence length, and a codebook loss directly supervises quantization quality. This also enables L-free inference via offline caches. (2) Multi-scale quantization: attention heads are partitioned into groups, each with its own small codebook, which reduces quantization error while keeping cache size fixed. (3) Efficient context injection: static features (e.g., item category, modality) are directly integrated, and relative position is modeled via a separable temporal kernel. All context is injected without enlarging the codebook, so cached representations remain query-independent. Experiments on three large-scale datasets (KuaiRand-1K, KuaiRec, TMALL) show that VQL consistently outperforms strong baselines, achieving higher accuracy while reducing inference latency, establishing a new state of the art in balancing accuracy and efficiency for ultra-long sequence recommendation.
Via
