Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Joel Z. Leibo

Deep reinforcement learning models the emergent dynamics of human cooperation


Mar 08, 2021
Kevin R. McKee, Edward Hughes, Tina O. Zhu, Martin J. Chadwick, Raphael Koster, Antonio Garcia Castaneda, Charlie Beattie, Thore Graepel, Matt Botvinick, Joel Z. Leibo


  Access Paper or Ask Questions

Quantifying environment and population diversity in multi-agent reinforcement learning


Feb 16, 2021
Kevin R. McKee, Joel Z. Leibo, Charlie Beattie, Richard Everett


  Access Paper or Ask Questions

Modelling Cooperation in Network Games with Spatio-Temporal Complexity


Feb 13, 2021
Michiel A. Bakker, Richard Everett, Laura Weidinger, Iason Gabriel, William S. Isaac, Joel Z. Leibo, Edward Hughes

* AAMAS 2021 

  Access Paper or Ask Questions

Open Problems in Cooperative AI


Dec 15, 2020
Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R. McKee, Joel Z. Leibo, Kate Larson, Thore Graepel


  Access Paper or Ask Questions

DeepMind Lab2D


Dec 12, 2020
Charles Beattie, Thomas Köppe, Edgar A. Duéñez-Guzmán, Joel Z. Leibo

* 7 pages, 2 figures 

  Access Paper or Ask Questions

Negotiating Team Formation Using Deep Reinforcement Learning


Oct 20, 2020
Yoram Bachrach, Richard Everett, Edward Hughes, Angeliki Lazaridou, Joel Z. Leibo, Marc Lanctot, Michael Johanson, Wojciech M. Czarnecki, Thore Graepel

* Artificial Intelligence 288 (2020): 103356 

  Access Paper or Ask Questions

Learning to Resolve Alliance Dilemmas in Many-Player Zero-Sum Games


Feb 27, 2020
Edward Hughes, Thomas W. Anthony, Tom Eccles, Joel Z. Leibo, David Balduzzi, Yoram Bachrach

* Accepted for publication at AAMAS 2020 

  Access Paper or Ask Questions

Social diversity and social preferences in mixed-motive reinforcement learning


Feb 12, 2020
Kevin R. McKee, Ian Gemp, Brian McWilliams, Edgar A. Duéñez-Guzmán, Edward Hughes, Joel Z. Leibo

* Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020) 

  Access Paper or Ask Questions

Social Diversity and Social Preferences in Mixed-Motive Reinforcement Learning


Feb 06, 2020
Kevin R. McKee, Ian Gemp, Brian McWilliams, Edgar A. Duéñez-Guzmán, Edward Hughes, Joel Z. Leibo


  Access Paper or Ask Questions

Silly rules improve the capacity of agents to learn stable enforcement and compliance behaviors


Jan 25, 2020
Raphael Köster, Dylan Hadfield-Menell, Gillian K. Hadfield, Joel Z. Leibo


  Access Paper or Ask Questions

Options as responses: Grounding behavioural hierarchies in multi-agent RL


Jun 06, 2019
Alexander Sasha Vezhnevets, Yuhuai Wu, Remi Leblond, Joel Z. Leibo

* First two authors contributed equally 

  Access Paper or Ask Questions

Interval timing in deep reinforcement learning agents


May 31, 2019
Ben Deverett, Ryan Faulkner, Meire Fortunato, Greg Wayne, Joel Z. Leibo

* 11 pages, 7 figures 

  Access Paper or Ask Questions

Learning Reciprocity in Complex Sequential Social Dilemmas


Mar 19, 2019
Tom Eccles, Edward Hughes, János Kramár, Steven Wheelwright, Joel Z. Leibo


  Access Paper or Ask Questions

Autocurricula and the Emergence of Innovation from Social Interaction: A Manifesto for Multi-Agent Intelligence Research


Mar 11, 2019
Joel Z. Leibo, Edward Hughes, Marc Lanctot, Thore Graepel

* 16 pages, 2 figures 

  Access Paper or Ask Questions

Malthusian Reinforcement Learning


Dec 17, 2018
Joel Z. Leibo, Julien Perolat, Edward Hughes, Steven Wheelwright, Adam H. Marblestone, Edgar Duéñez-Guzmán, Peter Sunehag, Iain Dunning, Thore Graepel

* 9 pages, 2 tables, 4 figures 

  Access Paper or Ask Questions

Intrinsic Social Motivation via Causal Influence in Multi-Agent RL


Oct 19, 2018
Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A. Ortega, DJ Strouse, Joel Z. Leibo, Nando de Freitas


  Access Paper or Ask Questions

Inequity aversion improves cooperation in intertemporal social dilemmas


Sep 27, 2018
Edward Hughes, Joel Z. Leibo, Matthew G. Phillips, Karl Tuyls, Edgar A. Duéñez-Guzmán, Antonio García Castañeda, Iain Dunning, Tina Zhu, Kevin R. McKee, Raphael Koster, Heather Roff, Thore Graepel

* 15 pages, 8 figures 

  Access Paper or Ask Questions

Human-level performance in first-person multiplayer games with population-based deep reinforcement learning


Jul 03, 2018
Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia Castaneda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Koray Kavukcuoglu, Thore Graepel


  Access Paper or Ask Questions

Unsupervised Predictive Memory in a Goal-Directed Agent


Mar 28, 2018
Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-Barwinska, Jack Rae, Piotr Mirowski, Joel Z. Leibo, Adam Santoro, Mevlana Gemici, Malcolm Reynolds, Tim Harley, Josh Abramson, Shakir Mohamed, Danilo Rezende, David Saxton, Adam Cain, Chloe Hillier, David Silver, Koray Kavukcuoglu, Matt Botvinick, Demis Hassabis, Timothy Lillicrap


  Access Paper or Ask Questions

Kickstarting Deep Reinforcement Learning


Mar 10, 2018
Simon Schmitt, Jonathan J. Hudson, Augustin Zidek, Simon Osindero, Carl Doersch, Wojciech M. Czarnecki, Joel Z. Leibo, Heinrich Kuttler, Andrew Zisserman, Karen Simonyan, S. M. Ali Eslami


  Access Paper or Ask Questions

Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents


Feb 04, 2018
Joel Z. Leibo, Cyprien de Masson d'Autume, Daniel Zoran, David Amos, Charles Beattie, Keith Anderson, Antonio García Castañeda, Manuel Sanchez, Simon Green, Audrunas Gruslys, Shane Legg, Demis Hassabis, Matthew M. Botvinick

* 28 pages, 11 figures 

  Access Paper or Ask Questions

Deep Q-learning from Demonstrations


Nov 22, 2017
Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, Audrunas Gruslys

* Published at AAAI 2018. Previously on arxiv as "Learning from Demonstrations for Real World Reinforcement Learning" 

  Access Paper or Ask Questions

A multi-agent reinforcement learning model of common-pool resource appropriation


Sep 06, 2017
Julien Perolat, Joel Z. Leibo, Vinicius Zambaldi, Charles Beattie, Karl Tuyls, Thore Graepel

* 15 pages, 11 figures 

  Access Paper or Ask Questions

Value-Decomposition Networks For Cooperative Multi-Agent Learning


Jun 16, 2017
Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, Thore Graepel


  Access Paper or Ask Questions

DeepMind Lab


Dec 13, 2016
Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler, Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson, Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis, Shane Legg, Stig Petersen

* 11 pages, 8 figures 

  Access Paper or Ask Questions

Using Fast Weights to Attend to the Recent Past


Dec 05, 2016
Jimmy Ba, Geoffrey Hinton, Volodymyr Mnih, Joel Z. Leibo, Catalin Ionescu

* Added [Schmidhuber 1993] citation to the last paragraph of the introduction. Fixed typo appendix A.1 uniform initialization to 1/\sqrt{H} 

  Access Paper or Ask Questions

View-tolerant face recognition and Hebbian learning imply mirror-symmetric neural tuning to head orientation


Jun 05, 2016
Joel Z. Leibo, Qianli Liao, Winrich Freiwald, Fabio Anselmi, Tomaso Poggio


  Access Paper or Ask Questions

How Important is Weight Symmetry in Backpropagation?


Feb 04, 2016
Qianli Liao, Joel Z. Leibo, Tomaso Poggio


  Access Paper or Ask Questions

Approximate Hubel-Wiesel Modules and the Data Structures of Neural Computation


Dec 28, 2015
Joel Z. Leibo, Julien Cornebise, Sergio Gómez, Demis Hassabis

* 13 pages, 4 figures 

  Access Paper or Ask Questions