Information extraction is the process of automatically extracting structured information from unstructured text data.
Non-prehensile manipulation using onboard sensing presents a fundamental challenge: the manipulated object occludes the sensor's field of view, creating occluded regions that can lead to collisions. We propose CURA-PPO, a reinforcement learning framework that addresses this challenge by explicitly modeling uncertainty under partial observability. By predicting collision possibility as a distribution, we extract both risk and uncertainty to guide the robot's actions. The uncertainty term encourages active perception, enabling simultaneous manipulation and information gathering to resolve occlusions. When combined with confidence maps that capture observation reliability, our approach enables safe navigation despite severe sensor occlusion. Extensive experiments across varying object sizes and obstacle configurations demonstrate that CURA-PPO achieves up to 3X higher success rates than the baselines, with learned behaviors that handle occlusions. Our method provides a practical solution for autonomous manipulation in cluttered environments using only onboard sensing.
Semi-structured table question answering (QA) is a challenging task that requires (1) precise extraction of cell contents and positions and (2) accurate recovery of key implicit logical structures, hierarchical relationships, and semantic associations encoded in table layouts. In practice, such tables are often interpreted manually by human experts, which is labor-intensive and time-consuming. However, automating this process remains difficult. Existing Text-to-SQL methods typically require converting semi-structured tables into structured formats, inevitably leading to information loss, while approaches like Text-to-Code and multimodal LLM-based QA struggle with complex layouts and often yield inaccurate answers. To address these limitations, we present ST-Raptor, an agentic system for semi-structured table QA. ST-Raptor offers an interactive analysis environment that combines visual editing, tree-based structural modeling, and agent-driven query resolution to support accurate and user-friendly table understanding. Experimental results on both benchmark and real-world datasets demonstrate that ST-Raptor outperforms existing methods in both accuracy and usability. The code is available at https://github.com/weAIDB/ST-Raptor, and a demonstration video is available at https://youtu.be/9GDR-94Cau4.
Multimodal time series forecasting is crucial in real-world applications, where decisions depend on both numerical data and contextual signals. The core challenge is to effectively combine temporal numerical patterns with the context embedded in other modalities, such as text. While most existing methods align textual features with time-series patterns one step at a time, they neglect the multiscale temporal influences of contextual information such as time-series cycles and dynamic shifts. This mismatch between local alignment and global textual context can be addressed by spectral decomposition, which separates time series into frequency components capturing both short-term changes and long-term trends. In this paper, we propose SpecTF, a simple yet effective framework that integrates the effect of textual data on time series in the frequency domain. Our method extracts textual embeddings, projects them into the frequency domain, and fuses them with the time series' spectral components using a lightweight cross-attention mechanism. This adaptively reweights frequency bands based on textual relevance before mapping the results back to the temporal domain for predictions. Experimental results demonstrate that SpecTF significantly outperforms state-of-the-art models across diverse multi-modal time series datasets while utilizing considerably fewer parameters. Code is available at https://github.com/hiepnh137/SpecTF.
A good language model starts with a good tokenizer. Tokenization is especially important for speech modeling, which must handle continuous signals that mix linguistic and non-linguistic information. A speech tokenizer should extract phonetics and prosody, suppress linguistically irrelevant information like speaker identity, and enable high-quality synthesis. We present Kanade, a single-layer disentangled speech tokenizer that realizes this ideal. Kanade separates out acoustic constants to create a single stream of tokens that captures rich phonetics and prosody. It does so without the need for auxiliary methods that existing disentangled codecs often rely on. Experiments show that Kanade achieves state-of-the-art speaker disentanglement and lexical availability, while maintaining excellent reconstruction quality.
We present HetroD, a dataset and benchmark for developing autonomous driving systems in heterogeneous environments. HetroD targets the critical challenge of navi- gating real-world heterogeneous traffic dominated by vulner- able road users (VRUs), including pedestrians, cyclists, and motorcyclists that interact with vehicles. These mixed agent types exhibit complex behaviors such as hook turns, lane splitting, and informal right-of-way negotiation. Such behaviors pose significant challenges for autonomous vehicles but remain underrepresented in existing datasets focused on structured, lane-disciplined traffic. To bridge the gap, we collect a large- scale drone-based dataset to provide a holistic observation of traffic scenes with centimeter-accurate annotations, HD maps, and traffic signal states. We further develop a modular toolkit for extracting per-agent scenarios to support downstream task development. In total, the dataset comprises over 65.4k high- fidelity agent trajectories, 70% of which are from VRUs. HetroD supports modeling of VRU behaviors in dense, het- erogeneous traffic and provides standardized benchmarks for forecasting, planning, and simulation tasks. Evaluation results reveal that state-of-the-art prediction and planning models struggle with the challenges presented by our dataset: they fail to predict lateral VRU movements, cannot handle unstructured maneuvers, and exhibit limited performance in dense and multi-agent scenarios, highlighting the need for more robust approaches to heterogeneous traffic. See our project page for more examples: https://hetroddata.github.io/HetroD/
Link prediction is a core challenge in graph machine learning, demanding models that capture rich and complex topological dependencies. While Graph Neural Networks (GNNs) are the standard solution, state-of-the-art pipelines often rely on explicit structural heuristics or memory-intensive node embeddings -- approaches that struggle to generalize or scale to massive graphs. Emerging Graph Transformers (GTs) offer a potential alternative but often incur significant overhead due to complex structural encodings, hindering their applications to large-scale link prediction. We challenge these sophisticated paradigms with PENCIL, an encoder-only plain Transformer that replaces hand-crafted priors with attention over sampled local subgraphs, retaining the scalability and hardware efficiency of standard Transformers. Through experimental and theoretical analysis, we show that PENCIL extracts richer structural signals than GNNs, implicitly generalizing a broad class of heuristics and subgraph-based expressivity. Empirically, PENCIL outperforms heuristic-informed GNNs and is far more parameter-efficient than ID-embedding--based alternatives, while remaining competitive across diverse benchmarks -- even without node features. Our results challenge the prevailing reliance on complex engineering techniques, demonstrating that simple design choices are potentially sufficient to achieve the same capabilities.
Large language models (LLMs) have demonstrated exceptional capabilities in text understanding, which has paved the way for their expansion into video LLMs (Vid-LLMs) to analyze video data. However, current Vid-LLMs struggle to simultaneously retain high-quality frame-level semantic information (i.e., a sufficient number of tokens per frame) and comprehensive video-level temporal information (i.e., an adequate number of sampled frames per video). This limitation hinders the advancement of Vid-LLMs towards fine-grained video understanding. To address this issue, we introduce the SlowFocus mechanism, which significantly enhances the equivalent sampling frequency without compromising the quality of frame-level visual tokens. SlowFocus begins by identifying the query-related temporal segment based on the posed question, then performs dense sampling on this segment to extract local high-frequency features. A multi-frequency mixing attention module is further leveraged to aggregate these local high-frequency details with global low-frequency contexts for enhanced temporal comprehension. Additionally, to tailor Vid-LLMs to this innovative mechanism, we introduce a set of training strategies aimed at bolstering both temporal grounding and detailed temporal reasoning capabilities. Furthermore, we establish FineAction-CGR, a benchmark specifically devised to assess the ability of Vid-LLMs to process fine-grained temporal understanding tasks. Comprehensive experiments demonstrate the superiority of our mechanism across both existing public video understanding benchmarks and our proposed FineAction-CGR.
Neural control of grasping arises from nonlinear interactions across multiple brain rhythms, yet EEG-based motor decoding has largely relied on linear, second-order spectral features. Here, we examine whether higher-order cross-frequency dynamics distinguish motor planning from execution during natural reach-to-grasp behavior. EEG was recorded in a cue-based paradigm during executed precision and power grips, enabling stage-resolved analysis of preparatory and execution-related neural activity. Cross-frequency bispectral analysis was used to compute bicoherence matrices across canonical frequency band pairs, from which magnitude- and phase-based features were extracted. Classification, permutation-based feature selection, and within-subject statistical testing showed that execution is characterized by substantially stronger and more discriminative nonlinear coupling than planning, with dominant contributions from beta- and gamma-driven interactions. In contrast, decoding of precision versus power grips achieved comparable performance during planning and execution, indicating that grasp-type representations emerge during planning and persist into execution. Spatial and spectral analyses further revealed that informative bispectral features reflect coordinated activity across prefrontal, central, and occipital regions. Despite substantial feature redundancy, effective dimensionality reduction preserved decoding performance. Together, these findings demonstrate that nonlinear cross-frequency coupling provides an interpretable and robust marker of motor planning and execution, extending bispectral EEG analysis to ecologically valid grasping and supporting its relevance for brain-computer interfaces and neuroprosthetic control.
Open-vocabulary object detection in remote sensing commonly relies on text-only prompting to specify target categories, implicitly assuming that inference-time category queries can be reliably grounded through pretraining-induced text-visual alignment. In practice, this assumption often breaks down in remote sensing scenarios due to task- and application-specific category semantics, resulting in unstable category specification under open-vocabulary settings. To address this limitation, we propose RS-MPOD, a multimodal open-vocabulary detection framework that reformulates category specification beyond text-only prompting by incorporating instance-grounded visual prompts, textual prompts, and their multimodal integration. RS-MPOD introduces a visual prompt encoder to extract appearance-based category cues from exemplar instances, enabling text-free category specification, and a multimodal fusion module to integrate visual and textual information when both modalities are available. Extensive experiments on standard, cross-dataset, and fine-grained remote sensing benchmarks show that visual prompting yields more reliable category specification under semantic ambiguity and distribution shifts, while multimodal prompting provides a flexible alternative that remains competitive when textual semantics are well aligned.
Flow-based methods have achieved significant success in various generative modeling tasks, capturing nuanced details within complex data distributions. However, few existing works have exploited this unique capability to resolve fine-grained structural details beyond generation tasks. This paper presents a flow-inspired framework for representation learning. First, we demonstrate that a rectified flow trained using independent coupling is zero everywhere at $t=0.5$ if and only if the source and target distributions are identical. We term this property the \emph{zero-flow criterion}. Second, we show that this criterion can certify conditional independence, thereby extracting \emph{sufficient information} from the data. Third, we translate this criterion into a tractable, simulation-free loss function that enables learning amortized Markov blankets in graphical models and latent representations in self-supervised learning tasks. Experiments on both simulated and real-world datasets demonstrate the effectiveness of our approach. The code reproducing our experiments can be found at: https://github.com/probabilityFLOW/zfe.