Information extraction is the process of automatically extracting structured information from unstructured text data.
Vision-language models (VLMs) have recently emerged as powerful representation learning systems that align visual observations with natural language concepts, offering new opportunities for semantic reasoning in safety-critical autonomous driving. This paper investigates how vision-language representations support driving scene safety assessment and decision-making when integrated into perception, prediction, and planning pipelines. We study three complementary system-level use cases. First, we introduce a lightweight, category-agnostic hazard screening approach leveraging CLIP-based image-text similarity to produce a low-latency semantic hazard signal. This enables robust detection of diverse and out-of-distribution road hazards without explicit object detection or visual question answering. Second, we examine the integration of scene-level vision-language embeddings into a transformer-based trajectory planning framework using the Waymo Open Dataset. Our results show that naively conditioning planners on global embeddings does not improve trajectory accuracy, highlighting the importance of representation-task alignment and motivating the development of task-informed extraction methods for safety-critical planning. Third, we investigate natural language as an explicit behavioral constraint on motion planning using the doScenes dataset. In this setting, passenger-style instructions grounded in visual scene elements suppress rare but severe planning failures and improve safety-aligned behavior in ambiguous scenarios. Taken together, these findings demonstrate that vision-language representations hold significant promise for autonomous driving safety when used to express semantic risk, intent, and behavioral constraints. Realizing this potential is fundamentally an engineering problem requiring careful system design and structured grounding rather than direct feature injection.
Large language models (LLMs) are increasingly used to access legal information. Yet, their deployment in multilingual legal settings is constrained by unreliable retrieval and the lack of domain-adapted, open-embedding models. In particular, existing multilingual legal corpora are not designed for semantic retrieval, and PDF-based legislative sources introduce substantial noise due to imperfect text extraction. To address these challenges, we introduce LEMUR, a large-scale multilingual corpus of EU environmental legislation constructed from 24,953 official EUR-Lex PDF documents covering 25 languages. We quantify the fidelity of PDF-to-text conversion by measuring lexical consistency against authoritative HTML versions using the Lexical Content Score (LCS). Building on LEMUR, we fine-tune three state-of-the-art multilingual embedding models using contrastive objectives in both monolingual and bilingual settings, reflecting realistic legal-retrieval scenarios. Experiments across low- and high-resource languages demonstrate that legal-domain fine-tuning consistently improves Top-k retrieval accuracy relative to strong baselines, with particularly pronounced gains for low-resource languages. Cross-lingual evaluations show that these improvements transfer to unseen languages, indicating that fine-tuning primarily enhances language-independent, content-level legal representations rather than language-specific cues. We publish code\footnote{\href{https://github.com/nargesbh/eur_lex}{GitHub Repository}} and data\footnote{\href{https://huggingface.co/datasets/G4KMU/LEMUR}{Hugging Face Dataset}}.
Robust and accurate perception of dynamic objects and map elements is crucial for autonomous vehicles performing safe navigation in complex traffic scenarios. While vision-only methods have become the de facto standard due to their technical advances, they can benefit from effective and cost-efficient fusion with radar measurements. In this work, we advance fusion methods by repurposing Gaussian Splatting as an efficient universal view transformer that bridges the view disparity gap, mapping both image pixels and radar points into a common Bird's-Eye View (BEV) representation. Our main contribution is GaussianCaR, an end-to-end network for BEV segmentation that, unlike prior BEV fusion methods, leverages Gaussian Splatting to map raw sensor information into latent features for efficient camera-radar fusion. Our architecture combines multi-scale fusion with a transformer decoder to efficiently extract BEV features. Experimental results demonstrate that our approach achieves performance on par with, or even surpassing, the state of the art on BEV segmentation tasks (57.3%, 82.9%, and 50.1% IoU for vehicles, roads, and lane dividers) on the nuScenes dataset, while maintaining a 3.2x faster inference runtime. Code and project page are available online.
Kernel methods have been extensively utilized in machine learning for classification and prediction tasks due to their ability to capture complex non-linear data patterns. However, single kernel approaches are inherently limited, as they rely on a single type of kernel function (e.g., Gaussian kernel), which may be insufficient to fully represent the heterogeneity or multifaceted nature of real-world data. Multiple kernel learning (MKL) addresses these limitations by constructing composite kernels from simpler ones and integrating information from heterogeneous sources. Despite these advances, traditional MKL methods are primarily designed for continuous outcomes. We extend MKL to accommodate the outcome variable belonging to the exponential family, representing a broader variety of data types, and refer to our proposed method as generalized linear models with integrated multiple additive regression with kernels (GLIMARK). Empirically, we demonstrate that GLIMARK can effectively recover or approximate the true data-generating mechanism. We have applied it to a COVID-19 chest X-ray dataset, predicting binary outcomes of ICU escalation and extracting clinically meaningful features, underscoring the practical utility of this approach in real-world scenarios.
Beamforming (BF) is essential for enhancing system capacity in fifth generation (5G) and beyond wireless networks, yet exhaustive beam training in ultra-massive multiple-input multiple-output (MIMO) systems incurs substantial overhead. To address this challenge, we propose a deep learning based framework that leverages position-aware features to improve beam prediction accuracy while reducing training costs. The proposed approach uses spatial coordinate labels to supervise a position extraction branch and integrates the resulting representations with beam-domain features through a feature fusion module. A dual-branch RegNet architecture is adopted to jointly learn location related and communication features for beam prediction. Two fusion strategies, namely adaptive fusion and adversarial fusion, are introduced to enable efficient feature integration. The proposed framework is evaluated on datasets generated by the DeepMIMO simulator across four urban scenarios at 3.5 GHz following 3GPP specifications, where both reference signal received power and user equipment location information are available. Simulation results under both in-distribution and out-of-distribution settings demonstrate that the proposed approach consistently outperforms traditional baselines and achieves more accurate and robust beam prediction by effectively incorporating positioning information.
Undersampled CT volumes minimize acquisition time and radiation exposure but introduce artifacts degrading image quality and diagnostic utility. Reducing these artifacts is critical for high-quality imaging. We propose a computationally efficient hybrid deep-learning framework that combines the strengths of 2D and 3D models. First, a 2D U-Net operates on individual slices of undersampled CT volumes to extract feature maps. These slice-wise feature maps are then stacked across the volume and used as input to a 3D decoder, which utilizes contextual information across slices to predict an artifact-free 3D CT volume. The proposed two-stage approach balances the computational efficiency of 2D processing with the volumetric consistency provided by 3D modeling. The results show substantial improvements in inter-slice consistency in coronal and sagittal direction with low computational overhead. This hybrid framework presents a robust and efficient solution for high-quality 3D CT image post-processing. The code of this project can be found on github: https://github.com/J-3TO/2D-3DCNN_sparseview/.
Chart understanding is a quintessential information fusion task, requiring the seamless integration of graphical and textual data to extract meaning. The advent of Multimodal Large Language Models (MLLMs) has revolutionized this domain, yet the landscape of MLLM-based chart analysis remains fragmented and lacks systematic organization. This survey provides a comprehensive roadmap of this nascent frontier by structuring the domain's core components. We begin by analyzing the fundamental challenges of fusing visual and linguistic information in charts. We then categorize downstream tasks and datasets, introducing a novel taxonomy of canonical and non-canonical benchmarks to highlight the field's expanding scope. Subsequently, we present a comprehensive evolution of methodologies, tracing the progression from classic deep learning techniques to state-of-the-art MLLM paradigms that leverage sophisticated fusion strategies. By critically examining the limitations of current models, particularly their perceptual and reasoning deficits, we identify promising future directions, including advanced alignment techniques and reinforcement learning for cognitive enhancement. This survey aims to equip researchers and practitioners with a structured understanding of how MLLMs are transforming chart information fusion and to catalyze progress toward more robust and reliable systems.
Solving partially observable Markov decision processes (POMDPs) requires computing policies under imperfect state information. Despite recent advances, the scalability of existing POMDP solvers remains limited. Moreover, many settings require a policy that is robust across multiple POMDPs, further aggravating the scalability issue. We propose the Lexpop framework for POMDP solving. Lexpop (1) employs deep reinforcement learning to train a neural policy, represented by a recurrent neural network, and (2) constructs a finite-state controller mimicking the neural policy through efficient extraction methods. Crucially, unlike neural policies, such controllers can be formally evaluated, providing performance guarantees. We extend Lexpop to compute robust policies for hidden-model POMDPs (HM-POMDPs), which describe finite sets of POMDPs. We associate every extracted controller with its worst-case POMDP. Using a set of such POMDPs, we iteratively train a robust neural policy and consequently extract a robust controller. Our experiments show that on problems with large state spaces, Lexpop outperforms state-of-the-art solvers for POMDPs as well as HM-POMDPs.
Local governance meeting records are official documents, in the form of minutes or transcripts, documenting how proposals, discussions, and procedural actions unfold during institutional meetings. While generally structured, these documents are often dense, bureaucratic, and highly heterogeneous across municipalities, exhibiting significant variation in language, terminology, structure, and overall organization. This heterogeneity makes them difficult for non-experts to interpret and challenging for intelligent automated systems to process, limiting public transparency and civic engagement. To address these challenges, computational methods can be employed to structure and interpret such complex documents. In particular, Natural Language Processing (NLP) offers well-established methods that can enhance the accessibility and interpretability of governmental records. In this focus article, we review foundational NLP tasks that support the structuring of local governance meeting documents. Specifically, we review three core tasks: document segmentation, domain-specific entity extraction and automatic text summarization, which are essential for navigating lengthy deliberations, identifying political actors and personal information, and generating concise representations of complex decision-making processes. In reviewing these tasks, we discuss methodological approaches, evaluation metrics, and publicly available resources, while highlighting domain-specific challenges such as data scarcity, privacy constraints, and source variability. By synthesizing existing work across these foundational tasks, this article provides a structured overview of how NLP can enhance the structuring and accessibility of local governance meeting records.
While machine-generated texts (MGTs) offer great convenience, they also pose risks such as disinformation and phishing, highlighting the need for reliable detection. Metric-based methods, which extract statistically distinguishable features of MGTs, are often more practical than complex model-based methods that are prone to overfitting. Given their diverse designs, we first place representative metric-based methods within a unified framework, enabling a clear assessment of their advantages and limitations. Our analysis identifies a core challenge across these methods: the token-level detection score is easily biased by the inherent randomness of the MGTs generation process. To address this, we theoretically and empirically reveal two relationships of context detection scores that may aid calibration: Neighbor Similarity and Initial Instability. We then propose a Markov-informed score calibration strategy that models these relationships using Markov random fields, and implements it as a lightweight component via a mean-field approximation, allowing our method to be seamlessly integrated into existing detectors. Extensive experiments in various real-world scenarios, such as cross-LLM and paraphrasing attacks, demonstrate significant gains over baselines with negligible computational overhead. The code is available at https://github.com/tmlr-group/MRF_Calibration.