Information extraction is the process of automatically extracting structured information from unstructured text data.
This study addresses the demand for real-time detection of tomatoes and tomato flowers by agricultural robots deployed on edge devices in greenhouse environments. Under practical imaging conditions, object detection systems often face challenges such as large scale variations caused by varying camera distances, severe occlusion from plant structures, and highly imbalanced class distributions. These factors make conventional object detection approaches that rely on fully annotated datasets difficult to simultaneously achieve high detection accuracy and deployment efficiency. To overcome these limitations, this research proposes an active learning driven lightweight object detection framework, integrating data analysis, model design, and training strategy. First, the size distribution of objects in raw agricultural images is analyzed to redefine an operational target range, thereby improving learning stability under real-world conditions. Second, an efficient feature extraction module is incorporated to reduce computational cost, while a lightweight attention mechanism is introduced to enhance feature representation under multi-scale and occluded scenarios. Finally, an active learning strategy is employed to iteratively select high-information samples for annotation and training under a limited labeling budget, effectively improving the recognition performance of minority and small-object categories. Experimental results demonstrate that, while maintaining a low parameter count and inference cost suitable for edge-device deployment, the proposed method effectively improves the detection performance of tomatoes and tomato flowers in raw images. Under limited annotation conditions, the framework achieves an overall detection accuracy of 67.8% mAP, validating its practicality and feasibility for intelligent agricultural applications.
Acquiring channel state information (CSI) through traditional methods, such as channel estimation, is increasingly challenging for the emerging sixth generation (6G) mobile networks due to high overhead. To address this issue, channel extrapolation techniques have been proposed to acquire complete CSI from a limited number of known CSIs. To improve extrapolation accuracy, environmental information, such as visual images or radar data, has been utilized, which poses challenges including additional hardware, privacy and multi-modal alignment concerns. To this end, this paper proposes a novel channel extrapolation framework by leveraging environment-related multi-path characteristics induced directly from CSI without integrating additional modalities. Specifically, we propose utilizing the multi-path characteristics in the form of power-delay profile (PDP), which is acquired using a CSI-to-PDP module. CSI-to-PDP module is trained in an AE-based framework by reconstructing the PDPs and constraining the latent low-dimensional features to represent the CSI. We further extract the total power & power-weighted delay of all the identified paths in PDP as the multi-path information. Building on this, we proposed a MAE architecture trained in a self-supervised manner to perform channel extrapolation. Unlike standard MAE approaches, our method employs separate encoders to extract features from the masked CSI and the multi-path information, which are then fused by a cross-attention module. Extensive simulations demonstrate that this framework improves extrapolation performance dramatically, with a minor increase in inference time (around 0.1 ms). Furthermore, our model shows strong generalization capabilities, particularly when only a small portion of the CSI is known, outperforming existing benchmarks.
Limited-angle computed tomography (LACT) offers the advantages of reduced radiation dose and shortened scanning time. Traditional reconstruction algorithms exhibit various inherent limitations in LACT. Currently, most deep learning-based LACT reconstruction methods focus on multi-domain fusion or the introduction of generic priors, failing to fully align with the core imaging characteristics of LACT-such as the directionality of artifacts and directional loss of structural information, which are caused by the absence of projection angles in certain directions. Inspired by the theory of visible and invisible singularities, taking into account the aforementioned core imaging characteristics of LACT, we propose a Visible Singularities Guided Correlation network for LACT reconstruction (VSGC). The design philosophy of VSGC consists of two core steps: First, extract VS edge features from LACT images and focus the model's attention on these VS. Second, establish correlations between the VS edge features and other regions of the image. Additionally, a multi-scale loss function with anisotropic constraint is employed to constrain the model to converge in multiple aspects. Finally, qualitative and quantitative validations are conducted on both simulated and real datasets to verify the effectiveness and feasibility of the proposed design. Particularly, in comparison with alternative methods, VSGC delivers more prominent performance in small angular ranges, with the PSNR improvement of 2.45 dB and the SSIM enhancement of 1.5\%. The code is publicly available at https://github.com/yqx7150/VSGC.
3-D object detection based on 4-D radar-vision is an important part in Internet of Vehicles (IoV). However, there are two challenges which need to be faced. First, the 4-D radar point clouds are sparse, leading to poor 3-D representation. Second, vision datas exhibit representation degradation under low-light, long distance detection and dense occlusion scenes, which provides unreliable texture information during fusion stage. To address these issues, a framework named SDCM is proposed, which contains Simulated Densifying and Compensatory Modeling Fusion for radar-vision 3-D object detection in IoV. Firstly, considering point generation based on Gaussian simulation of key points obtained from 3-D Kernel Density Estimation (3-D KDE), and outline generation based on curvature simulation, Simulated Densifying (SimDen) module is designed to generate dense radar point clouds. Secondly, considering that radar data could provide more real time information than vision data, due to the all-weather property of 4-D radar. Radar Compensatory Mapping (RCM) module is designed to reduce the affects of vision datas' representation degradation. Thirdly, considering that feature tensor difference values contain the effective information of every modality, which could be extracted and modeled for heterogeneity reduction and modalities interaction, Mamba Modeling Interactive Fusion (MMIF) module is designed for reducing heterogeneous and achieving interactive Fusion. Experiment results on the VoD, TJ4DRadSet and Astyx HiRes 2019 dataset show that SDCM achieves best performance with lower parameter quantity and faster inference speed. Our code will be available.
Temporal knowledge graph reasoning (TKGR) aims to predict future events by inferring missing entities with dynamic knowledge structures. Existing LLM-based reasoning methods prioritize contextual over structural relations, struggling to extract relevant subgraphs from dynamic graphs. This limits structural information understanding, leading to unstructured, hallucination-prone inferences especially with temporal inconsistencies. To address this problem, we propose IGETR (Integration of Graph and Editing-enhanced Temporal Reasoning), a hybrid reasoning framework that combines the structured temporal modeling capabilities of Graph Neural Networks (GNNs) with the contextual understanding of LLMs. IGETR operates through a three-stage pipeline. The first stage aims to ground the reasoning process in the actual data by identifying structurally and temporally coherent candidate paths through a temporal GNN, ensuring that inference starts from reliable graph-based evidence. The second stage introduces LLM-guided path editing to address logical and semantic inconsistencies, leveraging external knowledge to refine and enhance the initial paths. The final stage focuses on integrating the refined reasoning paths to produce predictions that are both accurate and interpretable. Experiments on standard TKG benchmarks show that IGETR achieves state-of-the-art performance, outperforming strong baselines with relative improvements of up to 5.6% on Hits@1 and 8.1% on Hits@3 on the challenging ICEWS datasets. Additionally, we execute ablation studies and additional analyses confirm the effectiveness of each component.
Estimating object mass from visual input is challenging because mass depends jointly on geometric volume and material-dependent density, neither of which is directly observable from RGB appearance. Consequently, mass prediction from pixels is ill-posed and therefore benefits from physically meaningful representations to constrain the space of plausible solutions. We propose a physically structured framework for single-image mass estimation that addresses this ambiguity by aligning visual cues with the physical factors governing mass. From a single RGB image, we recover object-centric three-dimensional geometry via monocular depth estimation to inform volume and extract coarse material semantics using a vision-language model to guide density-related reasoning. These geometry, semantic, and appearance representations are fused through an instance-adaptive gating mechanism, and two physically guided latent factors (volume- and density-related) are predicted through separate regression heads under mass-only supervision. Experiments on image2mass and ABO-500 show that the proposed method consistently outperforms state-of-the-art methods.
This paper rethinks steady-hand robotic manipulation by using a weakly supervised framework that fuses calibration-aware perception with admittance control. Unlike conventional automation that relies on labor-intensive 2D labeling, our framework leverages reusable warm-up trajectories to extract implicit spatial information, thereby achieving calibration-aware, depth-resolved perception without the need for external fiducials or manual depth annotation. By explicitly characterizing residuals from observation and calibration models, the system establishes a task-space error budget from recorded warm-ups. The uncertainty budget yields a lateral closed-loop accuracy of approx. 49 micrometers at 95% confidence (worst-case testing subset) and a depth accuracy of <= 291 micrometers at 95% confidence bound during large in-plane moves. In a within-subject user study (N=8), the learned agent reduces overall NASA-TLX workload by 77.1% relative to the simple steady-hand assistance baseline. These results demonstrate that the weakly supervised agent improves the reliability of microscope-guided biomedical micromanipulation without introducing complex setup requirements, offering a practical framework for microscope-guided intervention.
Multimodal Large Language Models (MLLMs) suffer from cross-modal hallucinations, where one modality inappropriately influences generation about another, leading to fabricated output. This exposes a more fundamental deficiency in modality-interaction control. To address this, we propose Modality-Adaptive Decoding (MAD), a training-free method that adaptively weights modality-specific decoding branches based on task requirements. MAD leverages the model's inherent ability to self-assess modality relevance by querying which modalities are needed for each task. The extracted modality probabilities are then used to adaptively weight contrastive decoding branches, enabling the model to focus on relevant information while suppressing cross-modal interference. Extensive experiments on CMM and AVHBench demonstrate that MAD significantly reduces cross-modal hallucinations across multiple audio-visual language models (7.8\% and 2.0\% improvements for VideoLLaMA2-AV, 8.7\% and 4.7\% improvements for Qwen2.5-Omni). Our approach demonstrates that explicit modality awareness through self-assessment is crucial for robust multimodal reasoning, offering a principled extension to existing contrastive decoding methods. Our code is available at \href{https://github.com/top-yun/MAD}{https://github.com/top-yun/MAD}
The increasing scale of graph datasets has significantly improved the performance of graph representation learning methods, but it has also introduced substantial training challenges. Graph dataset condensation techniques have emerged to compress large datasets into smaller yet information-rich datasets, while maintaining similar test performance. However, these methods strictly require downstream applications to match the original dataset and task, which often fails in cross-task and cross-domain scenarios. To address these challenges, we propose a novel causal-invariance-based and transferable graph dataset condensation method, named \textbf{TGCC}, providing effective and transferable condensed datasets. Specifically, to preserve domain-invariant knowledge, we first extract domain causal-invariant features from the spatial domain of the graph using causal interventions. Then, to fully capture the structural and feature information of the original graph, we perform enhanced condensation operations. Finally, through spectral-domain enhanced contrastive learning, we inject the causal-invariant features into the condensed graph, ensuring that the compressed graph retains the causal information of the original graph. Experimental results on five public datasets and our novel \textbf{FinReport} dataset demonstrate that TGCC achieves up to a 13.41\% improvement in cross-task and cross-domain complex scenarios compared to existing methods, and achieves state-of-the-art performance on 5 out of 6 datasets in the single dataset and task scenario.
Document-level Information Extraction (DocIE) aims to produce an output template with the entities and relations of interest occurring in the given document. Standard practices include prompting decoder-only LLMs using greedy decoding to avoid output variability. Rather than treating this variability as a limitation, we show that sampling can produce substantially better solutions than greedy decoding, especially when using reasoning models. We thus propose ThinkTwice, a sampling and selection framework in which the LLM generates multiple candidate templates for a given document, and a selection module chooses the most suitable one. We introduce both an unsupervised method that exploits agreement across generated outputs, and a supervised selection method using reward models trained on labeled DocIE data. To address the scarcity of golden reasoning trajectories for DocIE, we propose a rejection-sampling-based method to generate silver training data that pairs output templates with reasoning traces. Our experiments show the validity of unsupervised and supervised ThinkTwice, consistently outperforming greedy baselines and the state-of-the-art.