Reconstructing a structured vector-graphics representation from a rasterized floorplan image is typically an important prerequisite for computational tasks involving floorplans such as automated understanding or CAD workflows. However, existing techniques struggle in faithfully generating the structure and semantics conveyed by complex floorplans that depict large indoor spaces with many rooms and a varying numbers of polygon corners. To this end, we propose Raster2Seq, framing floorplan reconstruction as a sequence-to-sequence task in which floorplan elements--such as rooms, windows, and doors--are represented as labeled polygon sequences that jointly encode geometry and semantics. Our approach introduces an autoregressive decoder that learns to predict the next corner conditioned on image features and previously generated corners using guidance from learnable anchors. These anchors represent spatial coordinates in image space, hence allowing for effectively directing the attention mechanism to focus on informative image regions. By embracing the autoregressive mechanism, our method offers flexibility in the output format, enabling for efficiently handling complex floorplans with numerous rooms and diverse polygon structures. Our method achieves state-of-the-art performance on standard benchmarks such as Structure3D, CubiCasa5K, and Raster2Graph, while also demonstrating strong generalization to more challenging datasets like WAFFLE, which contain diverse room structures and complex geometric variations.
Accurate brain tumor segmentation from MRI is limited by expensive annotations and data heterogeneity across scanners and sites. We propose a semi-supervised teacher-student framework that combines an uncertainty-aware pseudo-labeling teacher with a progressive, confidence-based curriculum for the student. The teacher produces probabilistic masks and per-pixel uncertainty; unlabeled scans are ranked by image-level confidence and introduced in stages, while a dual-loss objective trains the student to learn from high-confidence regions and unlearn low-confidence ones. Agreement-based refinement further improves pseudo-label quality. On BraTS 2021, validation DSC increased from 0.393 (10% data) to 0.872 (100%), with the largest gains in early stages, demonstrating data efficiency. The teacher reached a validation DSC of 0.922, and the student surpassed the teacher on tumor subregions (e.g., NCR/NET 0.797 and Edema 0.980); notably, the student recovered the Enhancing class (DSC 0.620) where the teacher failed. These results show that confidence-driven curricula and selective unlearning provide robust segmentation under limited supervision and noisy pseudo-labels.
Undersampled CT volumes minimize acquisition time and radiation exposure but introduce artifacts degrading image quality and diagnostic utility. Reducing these artifacts is critical for high-quality imaging. We propose a computationally efficient hybrid deep-learning framework that combines the strengths of 2D and 3D models. First, a 2D U-Net operates on individual slices of undersampled CT volumes to extract feature maps. These slice-wise feature maps are then stacked across the volume and used as input to a 3D decoder, which utilizes contextual information across slices to predict an artifact-free 3D CT volume. The proposed two-stage approach balances the computational efficiency of 2D processing with the volumetric consistency provided by 3D modeling. The results show substantial improvements in inter-slice consistency in coronal and sagittal direction with low computational overhead. This hybrid framework presents a robust and efficient solution for high-quality 3D CT image post-processing. The code of this project can be found on github: https://github.com/J-3TO/2D-3DCNN_sparseview/.
Reliable identification of anatomical body regions is a prerequisite for many automated medical imaging workflows, yet existing solutions remain heavily dependent on unreliable DICOM metadata. Current solutions mainly use supervised learning, which limits their applicability in many real-world scenarios. In this work, we investigate whether body region detection in volumetric CT and MR images can be achieved in a fully zero-shot manner by using knowledge embedded in large pre-trained foundation models. We propose and systematically evaluate three training-free pipelines: (1) a segmentation-driven rule-based system leveraging pre-trained multi-organ segmentation models, (2) a Multimodal Large Language Model (MLLM) guided by radiologist-defined rules, and (3) a segmentation-aware MLLM that combines visual input with explicit anatomical evidence. All methods are evaluated on 887 heterogeneous CT and MR scans with manually verified anatomical region labels. The segmentation-driven rule-based approach achieves the strongest and most consistent performance, with weighted F1-scores of 0.947 (CT) and 0.914 (MR), demonstrating robustness across modalities and atypical scan coverage. The MLLM performs competitively in visually distinctive regions, while the segmentation-aware MLLM reveals fundamental limitations.
Photorealistic color retouching plays a vital role in visual content creation, yet manual retouching remains inaccessible to non-experts due to its reliance on specialized expertise. Reference-based methods offer a promising alternative by transferring the preset color of a reference image to a source image. However, these approaches often operate as novice learners, performing global color mappings derived from pixel-level statistics, without a true understanding of semantic context or human aesthetics. To address this issue, we propose SemiNFT, a Diffusion Transformer (DiT)-based retouching framework that mirrors the trajectory of human artistic training: beginning with rigid imitation and evolving into intuitive creation. Specifically, SemiNFT is first taught with paired triplets to acquire basic structural preservation and color mapping skills, and then advanced to reinforcement learning (RL) on unpaired data to cultivate nuanced aesthetic perception. Crucially, during the RL stage, to prevent catastrophic forgetting of old skills, we design a hybrid online-offline reward mechanism that anchors aesthetic exploration with structural review. % experiments Extensive experiments show that SemiNFT not only outperforms state-of-the-art methods on standard preset transfer benchmarks but also demonstrates remarkable intelligence in zero-shot tasks, such as black-and-white photo colorization and cross-domain (anime-to-photo) preset transfer. These results confirm that SemiNFT transcends simple statistical matching and achieves a sophisticated level of aesthetic comprehension. Our project can be found at https://melanyyang.github.io/SemiNFT/.
Recent work leverages Vision Foundation Models as image encoders to boost the generative performance of latent diffusion models (LDMs), as their semantic feature distributions are easy to learn. However, such semantic features often lack low-level information (\eg, color and texture), leading to degraded reconstruction fidelity, which has emerged as a primary bottleneck in further scaling LDMs. To address this limitation, we propose LV-RAE, a representation autoencoder that augments semantic features with missing low-level information, enabling high-fidelity reconstruction while remaining highly aligned with the semantic distribution. We further observe that the resulting high-dimensional, information-rich latent make decoders sensitive to latent perturbations, causing severe artifacts when decoding generated latent and consequently degrading generation quality. Our analysis suggests that this sensitivity primarily stems from excessive decoder responses along directions off the data manifold. Building on these insights, we propose fine-tuning the decoder to increase its robustness and smoothing the generated latent via controlled noise injection, thereby enhancing generation quality. Experiments demonstrate that LV-RAE significantly improves reconstruction fidelity while preserving the semantic abstraction and achieving strong generative quality. Our code is available at https://github.com/modyu-liu/LVRAE.
Human perception for effective object tracking in a 2D video stream arises from the implicit use of prior 3D knowledge combined with semantic reasoning. In contrast, most generic object tracking (GOT) methods primarily rely on 2D features of the target and its surroundings while neglecting 3D geometric cues, which makes them susceptible to partial occlusion, distractors, and variations in geometry and appearance. To address this limitation, we introduce GOT-Edit, an online cross-modality model editing approach that integrates geometry-aware cues into a generic object tracker from a 2D video stream. Our approach leverages features from a pre-trained Visual Geometry Grounded Transformer to enable geometric cue inference from only a few 2D images. To tackle the challenge of seamlessly combining geometry and semantics, GOT-Edit performs online model editing with null-space constrained updates that incorporate geometric information while preserving semantic discrimination, yielding consistently better performance across diverse scenarios. Extensive experiments on multiple GOT benchmarks demonstrate that GOT-Edit achieves superior robustness and accuracy, particularly under occlusion and clutter, establishing a new paradigm for combining 2D semantics with 3D geometric reasoning for generic object tracking.
Learning transferable multimodal embeddings for urban environments is challenging because urban understanding is inherently spatial, yet existing datasets and benchmarks lack explicit alignment between street-view images and urban structure. We introduce UGData, a spatially grounded dataset that anchors street-view images to structured spatial graphs and provides graph-aligned supervision via spatial reasoning paths and spatial context captions, exposing distance, directionality, connectivity, and neighborhood context beyond image content. Building on UGData, we propose UGE, a two-stage training strategy that progressively and stably aligns images, text, and spatial structures by combining instruction-guided contrastive learning with graph-based spatial encoding. We finally introduce UGBench, a comprehensive benchmark to evaluate how spatially grounded embeddings support diverse urban understanding tasks -- including geolocation ranking, image retrieval, urban perception, and spatial grounding. We develop UGE on multiple state-of-the-art VLM backbones, including Qwen2-VL, Qwen2.5-VL, Phi-3-Vision, and LLaVA1.6-Mistral, and train fixed-dimensional spatial embeddings with LoRA tuning. UGE built upon Qwen2.5-VL-7B backbone achieves up to 44% improvement in image retrieval and 30% in geolocation ranking on training cities, and over 30% and 22% gains respectively on held-out cities, demonstrating the effectiveness of explicit spatial grounding for spatially intensive urban tasks.
The automatic extraction of retinal vascular biomarkers from color fundus images (CFI) is essential for large-scale studies of the retinal vasculature. We present VascX, an open-source Python toolbox designed for the automated extraction of biomarkers from artery and vein segmentations. The VascX workflow processes vessel segmentation masks into skeletons to build undirected and directed vessel graphs, which are then used to resolve segments into continuous vessels. This architecture enables the calculation of a comprehensive suite of biomarkers, including vascular density, bifurcation angles, central retinal equivalents (CREs), tortuosity, and temporal angles, alongside image quality metrics. A distinguishing feature of VascX is its region awareness; by utilizing the fovea, optic disc, and CFI boundaries as anatomical landmarks, the tool ensures spatially standardized measurements and identifies when specific biomarkers are not computable. Spatially localized biomarkers are calculated over grids relative to these landmarks, facilitating precise clinical analysis. Released via GitHub and PyPI, VascX provides an explainable and modifiable framework that supports reproducible vascular research through integrated visualizations. By enabling the rapid extraction of established biomarkers and the development of new ones, VascX advances the field of oculomics, offering a robust, computationally efficient solution for scalable deployment in large-scale clinical and epidemiological databases.
Scaling federated learning (FL) to billion-parameter models introduces critical trade-offs between communication efficiency, model accuracy, and privacy guarantees. Existing solutions often tackle these challenges in isolation, sacrificing accuracy or relying on costly cryptographic tools. We propose ERIS, a serverless FL framework that balances privacy and accuracy while eliminating the server bottleneck and distributing the communication load. ERIS combines a model partitioning strategy, distributing aggregation across multiple client-side aggregators, with a distributed shifted gradient compression mechanism. We theoretically prove that ERIS (i) converges at the same rate as FedAvg under standard assumptions, and (ii) bounds mutual information leakage inversely with the number of aggregators, enabling strong privacy guarantees with no accuracy degradation. Experiments across image and text tasks, including large language models, confirm that ERIS achieves FedAvg-level accuracy while substantially reducing communication cost and improving robustness to membership inference and reconstruction attacks, without relying on heavy cryptography or noise injection.