We present a comprehensive overview of the Deep Image Prior (DIP) framework and its applications to image reconstruction in computed tomography. Unlike conventional deep learning methods that rely on large, supervised datasets, the DIP exploits the implicit bias of convolutional neural networks and operates in a fully unsupervised setting, requiring only a single measurement, even in the presence of noise. We describe the standard DIP formulation, outline key algorithmic design choices, and review several strategies to mitigate overfitting, including early stopping, explicit regularisation, and self-guided methods that adapt the network input. In addition, we examine computational improvements such as warm-start and stochastic optimisation methods to reduce the reconstruction time. The discussed methods are tested on real $μ$CT measurements, which allows examination of trade-offs among the different modifications and extensions.