Topic:Blind Image Deblurring
What is Blind Image Deblurring? Blind image deblurring is the process of removing blur from images without knowing the blur kernel.
Papers and Code
May 25, 2023
Abstract:Blurry images usually exhibit similar blur at various locations across the image domain, a property barely captured in nowadays blind deblurring neural networks. We show that when extracting patches of similar underlying blur is possible, jointly processing the stack of patches yields superior accuracy than handling them separately. Our collaborative scheme is implemented in a neural architecture with a pooling layer on the stack dimension. We present three practical patch extraction strategies for image sharpening, camera shake removal and optical aberration correction, and validate the proposed approach on both synthetic and real-world benchmarks. For each blur instance, the proposed collaborative strategy yields significant quantitative and qualitative improvements.
* 23 pages, 14 figures
Via

Feb 25, 2024
Abstract:Image enhancement algorithms are very useful for real world computer vision tasks where image resolution is often physically limited by the sensor size. While state-of-the-art deep neural networks show impressive results for image enhancement, they often struggle to enhance real-world images. In this work, we tackle a real-world setting: inpainting of images from Dunhuang caves. The Dunhuang dataset consists of murals, half of which suffer from corrosion and aging. These murals feature a range of rich content, such as Buddha statues, bodhisattvas, sponsors, architecture, dance, music, and decorative patterns designed by different artists spanning ten centuries, which makes manual restoration challenging. We modify two different existing methods (CAR, HINet) that are based upon state-of-the-art (SOTA) super resolution and deblurring networks. We show that those can successfully inpaint and enhance these deteriorated cave paintings. We further show that a novel combination of CAR and HINet, resulting in our proposed inpainting network (ARIN), is very robust to external noise, especially Gaussian noise. To this end, we present a quantitative and qualitative comparison of our proposed approach with existing SOTA networks and winners of the Dunhuang challenge. One of the proposed methods HINet) represents the new state of the art and outperforms the 1st place of the Dunhuang Challenge, while our combination ARIN, which is robust to noise, is comparable to the 1st place. We also present and discuss qualitative results showing the impact of our method for inpainting on Dunhuang cave images.
* 2022 Eleventh International Conference on Image Processing Theory,
Tools and Applications (IPTA), Salzburg, Austria, 2022, pp. 1-6
Via

Dec 20, 2023
Abstract:Mobile cameras, despite their significant advancements, still face low-light challenges due to compact sensors and lenses, leading to longer exposures and motion blur. Traditional solutions like blind deconvolution and learning-based methods often fall short in handling ill-posedness of the deblurring problem. To address this, we propose a novel deblurring framework for multi-camera smartphones, utilizing a hybrid imaging technique. We simultaneously capture a long exposure wide-angle image and ultra-wide burst images from a smartphone, and use the sharp burst to estimate blur kernels for deblurring the wide-angle image. For learning and evaluation of our network, we introduce the HCBlur dataset, which includes pairs of blurry wide-angle and sharp ultra-wide burst images, and their sharp wide-angle counterparts. We extensively evaluate our method, and the result shows the state-of-the-art quality.
Via

May 22, 2023
Abstract:Plug-and-play (PnP) prior is a well-known class of methods for solving imaging inverse problems by computing fixed-points of operators combining physical measurement models and learned image denoisers. While PnP methods have been extensively used for image recovery with known measurement operators, there is little work on PnP for solving blind inverse problems. We address this gap by presenting a new block-coordinate PnP (BC-PnP) method that efficiently solves this joint estimation problem by introducing learned denoisers as priors on both the unknown image and the unknown measurement operator. We present a new convergence theory for BC-PnP compatible with blind inverse problems by considering nonconvex data-fidelity terms and expansive denoisers. Our theory analyzes the convergence of BC-PnP to a stationary point of an implicit function associated with an approximate minimum mean-squared error (MMSE) denoiser. We numerically validate our method on two blind inverse problems: automatic coil sensitivity estimation in magnetic resonance imaging (MRI) and blind image deblurring. Our results show that BC-PnP provides an efficient and principled framework for using denoisers as PnP priors for jointly estimating measurement operators and images.
Via

Aug 10, 2023
Abstract:In this work we present a novel optimization strategy for image reconstruction tasks under analysis-based image regularization, which promotes sparse and/or low-rank solutions in some learned transform domain. We parameterize such regularizers using potential functions that correspond to weighted extensions of the $\ell_p^p$-vector and $\mathcal{S}_p^p$ Schatten-matrix quasi-norms with $0 < p \le 1$. Our proposed minimization strategy extends the Iteratively Reweighted Least Squares (IRLS) method, typically used for synthesis-based $\ell_p$ and $\mathcal{S}_p$ norm and analysis-based $\ell_1$ and nuclear norm regularization. We prove that under mild conditions our minimization algorithm converges linearly to a stationary point, and we provide an upper bound for its convergence rate. Further, to select the parameters of the regularizers that deliver the best results for the problem at hand, we propose to learn them from training data by formulating the supervised learning process as a stochastic bilevel optimization problem. We show that thanks to the convergence guarantees of our proposed minimization strategy, such optimization can be successfully performed with a memory-efficient implicit back-propagation scheme. We implement our learned IRLS variants as recurrent networks and assess their performance on the challenging image reconstruction tasks of non-blind deblurring, super-resolution and demosaicking. The comparisons against other existing learned reconstruction approaches demonstrate that our overall method is very competitive and in many cases outperforms existing unrolled networks, whose number of parameters is orders of magnitude higher than in our case.
* arXiv admin note: text overlap with arXiv:2304.10536
Via

Oct 30, 2023
Abstract:Recovering clear images from blurry ones with an unknown blur kernel is a challenging problem. Deep image prior (DIP) proposes to use the deep network as a regularizer for a single image rather than as a supervised model, which achieves encouraging results in the nonblind deblurring problem. However, since the relationship between images and the network architectures is unclear, it is hard to find a suitable architecture to provide sufficient constraints on the estimated blur kernels and clean images. Also, DIP uses the sparse maximum a posteriori (MAP), which is insufficient to enforce the selection of the recovery image. Recently, variational deep image prior (VDIP) was proposed to impose constraints on both blur kernels and recovery images and take the standard deviation of the image into account during the optimization process by the variational principle. However, we empirically find that VDIP struggles with processing image details and tends to generate suboptimal results when the blur kernel is large. Therefore, we combine total generalized variational (TGV) regularization with VDIP in this paper to overcome these shortcomings of VDIP. TGV is a flexible regularization that utilizes the characteristics of partial derivatives of varying orders to regularize images at different scales, reducing oil painting artifacts while maintaining sharp edges. The proposed VDIP-TGV effectively recovers image edges and details by supplementing extra gradient information through TGV. Additionally, this model is solved by the alternating direction method of multipliers (ADMM), which effectively combines traditional algorithms and deep learning methods. Experiments show that our proposed VDIP-TGV surpasses various state-of-the-art models quantitatively and qualitatively.
* 13 pages, 5 figures
Via

Aug 05, 2023
Abstract:In recent years, the removal of motion blur in photographs has seen impressive progress in the hands of deep learning-based methods, trained to map directly from blurry to sharp images. For this reason, approaches that explicitly use a forward degradation model received significantly less attention. However, a well-defined specification of the blur genesis, as an intermediate step, promotes the generalization and explainability of the method. Towards this goal, we propose a learning-based motion deblurring method based on dense non-uniform motion blur estimation followed by a non-blind deconvolution approach. Specifically, given a blurry image, a first network estimates the dense per-pixel motion blur kernels using a lightweight representation composed of a set of image-adaptive basis motion kernels and the corresponding mixing coefficients. Then, a second network trained jointly with the first one, unrolls a non-blind deconvolution method using the motion kernel field estimated by the first network. The model-driven aspect is further promoted by training the networks on sharp/blurry pairs synthesized according to a convolution-based, non-uniform motion blur degradation model. Qualitative and quantitative evaluation shows that the kernel prediction network produces accurate motion blur estimates, and that the deblurring pipeline leads to restorations of real blurred images that are competitive or superior to those obtained with existing end-to-end deep learning-based methods. Code and trained models are available at https://github.com/GuillermoCarbajal/J-MKPD/.
Via

Aug 10, 2023
Abstract:Images taken under the low-light condition often contain blur and saturated pixels at the same time. Deblurring images with saturated pixels is quite challenging. Because of the limited dynamic range, the saturated pixels are usually clipped in the imaging process and thus cannot be modeled by the linear blur model. Previous methods use manually designed smooth functions to approximate the clipping procedure. Their deblurring processes often require empirically defined parameters, which may not be the optimal choices for different images. In this paper, we develop a data-driven approach to model the saturated pixels by a learned latent map. Based on the new model, the non-blind deblurring task can be formulated into a maximum a posterior (MAP) problem, which can be effectively solved by iteratively computing the latent map and the latent image. Specifically, the latent map is computed by learning from a map estimation network (MEN), and the latent image estimation process is implemented by a Richardson-Lucy (RL)-based updating scheme. To estimate high-quality deblurred images without amplified artifacts, we develop a prior estimation network (PEN) to obtain prior information, which is further integrated into the RL scheme. Experimental results demonstrate that the proposed method performs favorably against state-of-the-art algorithms both quantitatively and qualitatively on synthetic and real-world images.
* Accepted by IJCV
Via

Mar 09, 2023
Abstract:Most computer vision and machine learning-based approaches for historical document analysis are tailored to grayscale or RGB images and thus, mostly exploit their spatial information. Multispectral (MS) and hyperspectral (HS) images contain, next to the spatial information, much richer spectral information than RGB images (usually spreading beyond the visible spectral range) that can facilitate more effective feature extraction, more accurate classification and recognition, and thus, improved analysis. Although utilization of rich spectral information can improve historical document analysis tremendously, there are still some potential limitations of HS imagery such as camera-induced noise and blur that require a carefully designed preprocessing step. Here, we propose novel blind HS image deblurring methods tailored to document images. We exploit a low-rank property of HS images (i.e., by projecting an HS image to a lower dimensional subspace) and utilize a text tailor image prior to performing a PSF estimation and deblurring of subspace components. The preliminary results show that the proposed approach gives good results over all spectral bands, removing successfully image artefacts introduced by blur and noise and significantly increasing the number of bands that can be used in further analysis.
* In: Image Analysis and Processing. ICIAP 2022 Workshops. Lecture
Notes in Computer Science, vol. 13373. Springer, Cham (2022)
* This project has received funding from the European Union's Horizon
2020 research and innovation programme under grant agreement No. 101026453.
This work is published in the Lecture Notes in Computer Science book series
(LNCS, volume 13373) as part of the Image Analysis and Processing, ICIAP 2022
Workshops
Via

Jan 30, 2023
Abstract:Pre-trained diffusion models have been successfully used as priors in a variety of linear inverse problems, where the goal is to reconstruct a signal from noisy linear measurements. However, existing approaches require knowledge of the linear operator. In this paper, we propose GibbsDDRM, an extension of Denoising Diffusion Restoration Models (DDRM) to a blind setting in which the linear measurement operator is unknown. GibbsDDRM constructs a joint distribution of the data, measurements, and linear operator by using a pre-trained diffusion model for the data prior, and it solves the problem by posterior sampling with an efficient variant of a Gibbs sampler. The proposed method is problem-agnostic, meaning that a pre-trained diffusion model can be applied to various inverse problems without fine tuning. In experiments, it achieved high performance on both blind image deblurring and vocal dereverberation tasks, despite the use of simple generic priors for the underlying linear operators.
Via
