Abstract:Poisson denoising plays a central role in photon-limited imaging applications such as microscopy, astronomy, and medical imaging. It is common to train deep learning models for denoising using the mean-squared error (MSE) loss, which corresponds to computing the posterior mean $\mathbb{E}[x \mid y]$. When the noise is Gaussian, Tweedie's formula enables approximation of the posterior distribution through its higher-order moments. However, this connection no longer holds for Poisson denoising: while $ \mathbb{E}[x \mid y] $ still minimizes MSE, it fails to capture posterior uncertainty. We propose a new strategy for Poisson denoising based on training a log-network. Instead of predicting the posterior mean $ \mathbb{E}[x \mid y] $, the log-network is trained to learn $\mathbb{E}[\log x \mid y]$, leveraging the logarithm as a convenient parameterization for the Poisson distribution. We provide a theoretical proof that the proposed log-network enables recovery of higher-order posterior moments and thus supports posterior approximation. Experiments on simulated data show that our method matches the denoising performance of standard MMSE models while providing access to the posterior.
Abstract:Out-of-distribution (OOD) detection is critical for the safe deployment of machine learning systems in safety-sensitive domains. Diffusion models have recently emerged as powerful generative models, capable of capturing complex data distributions through iterative denoising. Building on this progress, recent work has explored their potential for OOD detection. We propose EigenScore, a new OOD detection method that leverages the eigenvalue spectrum of the posterior covariance induced by a diffusion model. We argue that posterior covariance provides a consistent signal of distribution shift, leading to larger trace and leading eigenvalues on OOD inputs, yielding a clear spectral signature. We further provide analysis explicitly linking posterior covariance to distribution mismatch, establishing it as a reliable signal for OOD detection. To ensure tractability, we adopt a Jacobian-free subspace iteration method to estimate the leading eigenvalues using only forward evaluations of the denoiser. Empirically, EigenScore achieves SOTA performance, with up to 5% AUROC improvement over the best baseline. Notably, it remains robust in near-OOD settings such as CIFAR-10 vs CIFAR-100, where existing diffusion-based methods often fail.
Abstract:Plug-and-Play Priors (PnP) is a popular framework for solving imaging inverse problems by integrating learned priors in the form of denoisers trained to remove Gaussian noise from images. In standard PnP methods, the denoiser is applied directly in the image domain, serving as an implicit prior on natural images. This paper considers an alternative analysis formulation of PnP, in which the prior is imposed on a transformed representation of the image, such as its gradient. Specifically, we train a Gaussian denoiser to operate in the gradient domain, rather than on the image itself. Conceptually, this is an extension of total variation (TV) regularization to learned TV regularization. To incorporate this gradient-domain prior in image reconstruction algorithms, we develop two analysis PnP algorithms based on half-quadratic splitting (APnP-HQS) and the alternating direction method of multipliers (APnP-ADMM). We evaluate our approach on image deblurring and super-resolution, demonstrating that the analysis formulation achieves performance comparable to image-domain PnP algorithms.
Abstract:Diffusion models are widely used in applications ranging from image generation to inverse problems. However, training diffusion models typically requires clean ground-truth images, which are unavailable in many applications. We introduce the Measurement Score-based diffusion Model (MSM), a novel framework that learns partial measurement scores using only noisy and subsampled measurements. MSM models the distribution of full measurements as an expectation over partial scores induced by randomized subsampling. To make the MSM representation computationally efficient, we also develop a stochastic sampling algorithm that generates full images by using a randomly selected subset of partial scores at each step. We additionally propose a new posterior sampling method for solving inverse problems that reconstructs images using these partial scores. We provide a theoretical analysis that bounds the Kullback-Leibler divergence between the distributions induced by full and stochastic sampling, establishing the accuracy of the proposed algorithm. We demonstrate the effectiveness of MSM on natural images and multi-coil MRI, showing that it can generate high-quality images and solve inverse problems -- all without access to clean training data. Code is available at https://github.com/wustl-cig/MSM.
Abstract:Diffusion models are extensively used for modeling image priors for inverse problems. We introduce \emph{Diff-Unfolding}, a principled framework for learning posterior score functions of \emph{conditional diffusion models} by explicitly incorporating the physical measurement operator into a modular network architecture. Diff-Unfolding formulates posterior score learning as the training of an unrolled optimization scheme, where the measurement model is decoupled from the learned image prior. This design allows our method to generalize across inverse problems at inference time by simply replacing the forward operator without retraining. We theoretically justify our unrolling approach by showing that the posterior score can be derived from a composite model-based optimization formulation. Extensive experiments on image restoration and accelerated MRI show that Diff-Unfolding achieves state-of-the-art performance, improving PSNR by up to 2 dB and reducing LPIPS by $22.7\%$, while being both compact (47M parameters) and efficient (0.72 seconds per $256 \times 256$ image). An optimized C++/LibTorch implementation further reduces inference time to 0.63 seconds, underscoring the practicality of our approach.
Abstract:Diffusion models are widely used as priors in imaging inverse problems. However, their performance often degrades under distribution shifts between the training and test-time images. Existing methods for identifying and quantifying distribution shifts typically require access to clean test images, which are almost never available while solving inverse problems (at test time). We propose a fully unsupervised metric for estimating distribution shifts using only indirect (corrupted) measurements and score functions from diffusion models trained on different datasets. We theoretically show that this metric estimates the KL divergence between the training and test image distributions. Empirically, we show that our score-based metric, using only corrupted measurements, closely approximates the KL divergence computed from clean images. Motivated by this result, we show that aligning the out-of-distribution score with the in-distribution score -- using only corrupted measurements -- reduces the KL divergence and leads to improved reconstruction quality across multiple inverse problems.
Abstract:Total variation (TV) is a widely used function for regularizing imaging inverse problems that is particularly appropriate for images whose underlying structure is piecewise constant. TV regularized optimization problems are typically solved using proximal methods, but the way in which they are applied is constrained by the absence of a closed-form expression for the proximal operator of the TV function. A closed-form approximation of the TV proximal operator has previously been proposed, but its accuracy was not theoretically explored in detail. We address this gap by making several new theoretical contributions, proving that the approximation leads to a proximal operator of some convex function, that it always decreases the TV function, and that its error can be fully characterized and controlled with its scaling parameter. We experimentally validate our theoretical results on image denoising and sparse-view computed tomography (CT) image reconstruction.
Abstract:Nuclear Magnetic Resonance (NMR) spectroscopy is a widely-used technique in the fields of bio-medicine, chemistry, and biology for the analysis of chemicals and proteins. The signals from NMR spectroscopy often have low signal-to-noise ratio (SNR) due to acquisition noise, which poses significant challenges for subsequent analysis. Recent work has explored the potential of deep learning (DL) for NMR denoising, showing significant performance gains over traditional methods such as total variation (TV) denoising. This paper shows that the performance of DL denoising for NMR can be further improved by combining data-driven training with traditional TV denoising. The proposed TVCondNet method outperforms both traditional TV and DL methods by including the TV solution as a condition during DL training. Our validation on experimentally collected NMR data shows the superior denoising performance and faster inference speed of TVCondNet compared to existing methods.
Abstract:Small Angle Neutron Scattering (SANS) is a non-destructive technique utilized to probe the nano- to mesoscale structure of materials by analyzing the scattering pattern of neutrons. Accelerating SANS acquisition for in-situ analysis is essential, but it often reduces the signal-to-noise ratio (SNR), highlighting the need for methods to enhance SNR even with short acquisition times. While deep learning (DL) can be used for enhancing SNR of low quality SANS, the amount of experimental data available for training is usually severely limited. We address this issue by proposing a Plug-and-play Restoration for SANS (PR-SANS) that uses domain-adapted priors. The prior in PR-SANS is initially trained on a set of generic images and subsequently fine-tuned using a limited amount of experimental SANS data. We present a theoretical convergence analysis of PR-SANS by focusing on the error resulting from using inexact domain-adapted priors instead of the ideal ones. We demonstrate with experimentally collected SANS data that PR-SANS can recover high-SNR 2D SANS detector images from low-SNR detector images, effectively increasing the SNR. This advancement enables a reduction in acquisition times by a factor of 12 while maintaining the original signal quality.
Abstract:Plug-and-Play Priors (PnP) is a well-known class of methods for solving inverse problems in computational imaging. PnP methods combine physical forward models with learned prior models specified as image denoisers. A common issue with the learned models is that of a performance drop when there is a distribution shift between the training and testing data. Test-time training (TTT) was recently proposed as a general strategy for improving the performance of learned models when training and testing data come from different distributions. In this paper, we propose PnP-TTT as a new method for overcoming distribution shifts in PnP. PnP-TTT uses deep equilibrium learning (DEQ) for optimizing a self-supervised loss at the fixed points of PnP iterations. PnP-TTT can be directly applied on a single test sample to improve the generalization of PnP. We show through simulations that given a sufficient number of measurements, PnP-TTT enables the use of image priors trained on natural images for image reconstruction in magnetic resonance imaging (MRI).