What is autonomous cars? Autonomous cars are self-driving vehicles that use artificial intelligence (AI) and sensors to navigate and operate without human intervention, using high-resolution cameras and lidars that detect what happens in the car's immediate surroundings. They have the potential to revolutionize transportation by improving safety, efficiency, and accessibility.
Papers and Code
Jun 24, 2024
Abstract:Applications from manipulation to autonomous vehicles rely on robust and general object tracking to safely perform tasks in dynamic environments. We propose the first certifiably optimal category-level approach for simultaneous shape estimation and pose tracking of an object of known category (e.g. a car). Our approach uses 3D semantic keypoint measurements extracted from an RGB-D image sequence, and phrases the estimation as a fixed-lag smoothing problem. Temporal constraints enforce the object's rigidity (fixed shape) and smooth motion according to a constant-twist motion model. The solutions to this problem are the estimates of the object's state (poses, velocities) and shape (paramaterized according to the active shape model) over the smoothing horizon. Our key contribution is to show that despite the non-convexity of the fixed-lag smoothing problem, we can solve it to certifiable optimality using a small-size semidefinite relaxation. We also present a fast outlier rejection scheme that filters out incorrect keypoint detections with shape and time compatibility tests, and wrap our certifiable solver in a graduated non-convexity scheme. We evaluate the proposed approach on synthetic and real data, showcasing its performance in a table-top manipulation scenario and a drone-based vehicle tracking application.
* 11 pages, 6 figures (with appendix). Code released at
https://github.com/MIT-SPARK/certifiable_tracking. Video available at
https://youtu.be/eTIlVD9pDtc
Via

Jul 15, 2024
Abstract:This study proposes a unified theory and statistical learning approach for traffic conflict detection, addressing the long-existing call for a consistent and comprehensive methodology to evaluate the collision risk emerged in road user interactions. The proposed theory assumes a context-dependent probabilistic collision risk and frames conflict detection as estimating the risk by statistical learning from observed proximities and contextual variables. Three primary tasks are integrated: representing interaction context from selected observables, inferring proximity distributions in different contexts, and applying extreme value theory to relate conflict intensity with conflict probability. As a result, this methodology is adaptable to various road users and interaction scenarios, enhancing its applicability without the need for pre-labelled conflict data. Demonstration experiments are executed using real-world trajectory data, with the unified metric trained on lane-changing interactions on German highways and applied to near-crash events from the 100-Car Naturalistic Driving Study in the U.S. The experiments demonstrate the methodology's ability to provide effective collision warnings, generalise across different datasets and traffic environments, cover a broad range of conflicts, and deliver a long-tailed distribution of conflict intensity. This study contributes to traffic safety by offering a consistent and explainable methodology for conflict detection applicable across various scenarios. Its societal implications include enhanced safety evaluations of traffic infrastructures, more effective collision warning systems for autonomous and driving assistance systems, and a deeper understanding of road user behaviour in different traffic conditions, contributing to a potential reduction in accident rates and improving overall traffic safety.
* 21 pages, 9 figures, prepared for submission
Via

Jul 18, 2024
Abstract:We outline the principles of classical assurance for computer-based systems that pose significant risks. We then consider application of these principles to systems that employ Artificial Intelligence (AI) and Machine Learning (ML). A key element in this "dependability" perspective is a requirement to have near-complete understanding of the behavior of critical components, and this is considered infeasible for AI and ML. Hence the dependability perspective aims to minimize trust in AI and ML elements by using "defense in depth" with a hierarchy of less complex systems, some of which may be highly assured conventionally engineered components, to "guard" them. This may be contrasted with the "trustworthy" perspective that seeks to apply assurance to the AI and ML elements themselves. In cyber-physical and many other systems, it is difficult to provide guards that do not depend on AI and ML to perceive their environment (e.g., other vehicles sharing the road with a self-driving car), so both perspectives are needed and there is a continuum or spectrum between them. We focus on architectures toward the dependability end of the continuum and invite others to consider additional points along the spectrum. For guards that require perception using AI and ML, we examine ways to minimize the trust placed in these elements; they include diversity, defense in depth, explanations, and micro-ODDs. We also examine methods to enforce acceptable behavior, given a model of the world. These include classical cyber-physical calculations and envelopes, and normative rules based on overarching principles, constitutions, ethics, or reputation. We apply our perspective to autonomous systems, AI systems for specific functions, generic AI such as Large Language Models, and to Artificial General Intelligence (AGI), and we propose current best practice and an agenda for research.
Via

Jul 20, 2024
Abstract:The ever-increasing use of artificial intelligence in autonomous systems has significantly contributed to advance the research on multi-object tracking, adopted in several real-time applications (e.g., autonomous driving, surveillance drones, robotics) to localize and follow the trajectory of multiple objects moving in front of a camera. Current tracking algorithms can be divided into two main categories: some approaches introduce complex heuristics and re-identification models to improve the tracking accuracy and reduce the number of identification switches, without particular attention to the timing performance, whereas other approaches are aimed at reducing response times by removing the re-identification phase, thus penalizing the tracking accuracy. This work proposes a new approach to multi-class object tracking that allows achieving smaller and more predictable execution times, without penalizing the tracking performance. The idea is to reduce the problem of matching predictions with detections into smaller sub-problems by splitting the Hungarian matrix by class and invoking the second re-identification stage only when strictly necessary for a smaller number of elements. The proposed solution was evaluated in complex urban scenarios with several objects of different types (as cars, trucks, bikes, and pedestrians), showing the effectiveness of the multi-class approach with respect to state of the art trackers.
Via

Jul 24, 2024
Abstract:3D object detection plays a crucial role in various applications such as autonomous vehicles, robotics and augmented reality. However, training 3D detectors requires a costly precise annotation, which is a hindrance to scaling annotation to large datasets. To address this challenge, we propose a weakly supervised 3D annotator that relies solely on 2D bounding box annotations from images, along with size priors. One major problem is that supervising a 3D detection model using only 2D boxes is not reliable due to ambiguities between different 3D poses and their identical 2D projection. We introduce a simple yet effective and generic solution: we build 3D proxy objects with annotations by construction and add them to the training dataset. Our method requires only size priors to adapt to new classes. To better align 2D supervision with 3D detection, our method ensures depth invariance with a novel expression of the 2D losses. Finally, to detect more challenging instances, our annotator follows an offline pseudo-labelling scheme which gradually improves its 3D pseudo-labels. Extensive experiments on the KITTI dataset demonstrate that our method not only performs on-par or above previous works on the Car category, but also achieves performance close to fully supervised methods on more challenging classes. We further demonstrate the effectiveness and robustness of our method by being the first to experiment on the more challenging nuScenes dataset. We additionally propose a setting where weak labels are obtained from a 2D detector pre-trained on MS-COCO instead of human annotations.
Via

May 28, 2024
Abstract:Rapid advancements in Autonomous Driving (AD) tasks turned a significant shift toward end-to-end fashion, particularly in the utilization of vision-language models (VLMs) that integrate robust logical reasoning and cognitive abilities to enable comprehensive end-to-end planning. However, these VLM-based approaches tend to integrate 2D vision tokenizers and a large language model (LLM) for ego-car planning, which lack 3D geometric priors as a cornerstone of reliable planning. Naturally, this observation raises a critical concern: Can a 2D-tokenized LLM accurately perceive the 3D environment? Our evaluation of current VLM-based methods across 3D object detection, vectorized map construction, and environmental caption suggests that the answer is, unfortunately, NO. In other words, 2D-tokenized LLM fails to provide reliable autonomous driving. In response, we introduce DETR-style 3D perceptrons as 3D tokenizers, which connect LLM with a one-layer linear projector. This simple yet elegant strategy, termed Atlas, harnesses the inherent priors of the 3D physical world, enabling it to simultaneously process high-resolution multi-view images and employ spatiotemporal modeling. Despite its simplicity, Atlas demonstrates superior performance in both 3D detection and ego planning tasks on nuScenes dataset, proving that 3D-tokenized LLM is the key to reliable autonomous driving. The code and datasets will be released.
Via

Jun 20, 2024
Abstract:The integration of thermal imaging data with Multimodal Large Language Models (MLLMs) constitutes an exciting opportunity for improving the safety and functionality of autonomous driving systems and many Intelligent Transportation Systems (ITS) applications. This study investigates whether MLLMs can understand complex images from RGB and thermal cameras and detect objects directly. Our goals were to 1) assess the ability of the MLLM to learn from information from various sets, 2) detect objects and identify elements in thermal cameras, 3) determine whether two independent modality images show the same scene, and 4) learn all objects using different modalities. The findings showed that both GPT-4 and Gemini were effective in detecting and classifying objects in thermal images. Similarly, the Mean Absolute Percentage Error (MAPE) for pedestrian classification was 70.39% and 81.48%, respectively. Moreover, the MAPE for bike, car, and motorcycle detection were 78.4%, 55.81%, and 96.15%, respectively. Gemini produced MAPE of 66.53%, 59.35% and 78.18% respectively. This finding further demonstrates that MLLM can identify thermal images and can be employed in advanced imaging automation technologies for ITS applications.
Via

May 22, 2024
Abstract:3D occupancy-based perception pipeline has significantly advanced autonomous driving by capturing detailed scene descriptions and demonstrating strong generalizability across various object categories and shapes. Current methods predominantly rely on LiDAR or camera inputs for 3D occupancy prediction. These methods are susceptible to adverse weather conditions, limiting the all-weather deployment of self-driving cars. To improve perception robustness, we leverage the recent advances in automotive radars and introduce a novel approach that utilizes 4D imaging radar sensors for 3D occupancy prediction. Our method, RadarOcc, circumvents the limitations of sparse radar point clouds by directly processing the 4D radar tensor, thus preserving essential scene details. RadarOcc innovatively addresses the challenges associated with the voluminous and noisy 4D radar data by employing Doppler bins descriptors, sidelobe-aware spatial sparsification, and range-wise self-attention mechanisms. To minimize the interpolation errors associated with direct coordinate transformations, we also devise a spherical-based feature encoding followed by spherical-to-Cartesian feature aggregation. We benchmark various baseline methods based on distinct modalities on the public K-Radar dataset. The results demonstrate RadarOcc's state-of-the-art performance in radar-based 3D occupancy prediction and promising results even when compared with LiDAR- or camera-based methods. Additionally, we present qualitative evidence of the superior performance of 4D radar in adverse weather conditions and explore the impact of key pipeline components through ablation studies.
* 16 pages, 3 figures
Via

Jun 14, 2024
Abstract:Non-cooperative interactions commonly occur in multi-agent scenarios such as car racing, where an ego vehicle can choose to overtake the rival, or stay behind it until a safe overtaking "corridor" opens. While an expert human can do well at making such time-sensitive decisions, the development of safe and efficient game-theoretic trajectory planners capable of rapidly reasoning discrete options is yet to be fully addressed. The recently developed nonlinear opinion dynamics (NOD) show promise in enabling fast opinion formation and avoiding safety-critical deadlocks. However, it remains an open challenge to determine the model parameters of NOD automatically and adaptively, accounting for the ever-changing environment of interaction. In this work, we propose for the first time a learning-based, game-theoretic approach to synthesize a Neural NOD model from expert demonstrations, given as a dataset containing (possibly incomplete) state and action trajectories of interacting agents. The learned NOD can be used by existing dynamic game solvers to plan decisively while accounting for the predicted change of other agents' intents, thus enabling situational awareness in planning. We demonstrate Neural NOD's ability to make fast and robust decisions in a simulated autonomous racing example, leading to tangible improvements in safety and overtaking performance over state-of-the-art data-driven game-theoretic planning methods.
Via

Jun 04, 2024
Abstract:We present a method to integrate real-time out-of-distribution (OOD) detection for neural network trajectory predictors, and to adapt the control strategy of a robot (e.g., a self-driving car or drone) to preserve safety while operating in OOD regimes. Specifically, we use a neural network ensemble to predict the trajectory for a dynamic obstacle (such as a pedestrian), and use the maximum singular value of the empirical covariance among the ensemble as a signal for OOD detection. We calibrate this signal with a small fraction of held-out training data using the methodology of conformal prediction, to derive an OOD detector with probabilistic guarantees on the false-positive rate of the detector, given a user-specified confidence level. During in-distribution operation, we use an MPC controller to avoid collisions with the obstacle based on the trajectory predicted by the neural network ensemble. When OOD conditions are detected, we switch to a reachability-based controller to guarantee safety under the worst-case actions of the obstacle. We verify our method in extensive autonomous driving simulations in a pedestrian crossing scenario, showing that our OOD detector obtains the desired accuracy rate within a theoretically-predicted range. We also demonstrate the effectiveness of our method with real pedestrian data. We show improved safety and less conservatism in comparison with two state-of-the-art methods that also use conformal prediction, but without OOD adaptation.
Via
