Style transfer is the process of applying the style of one image to another image using deep learning techniques.
Whereas reinforcement learning has been applied with success to a range of robotic control problems in complex, uncertain environments, reliance on extensive data - typically sourced from simulation environments - limits real-world deployment due to the domain gap between simulated and physical systems, coupled with limited real-world sample availability. We propose a novel method for sim-to-real transfer of reinforcement learning policies, based on a reinterpretation of neural style transfer from image processing to synthesise novel training data from unpaired unlabelled real world datasets. We employ a variational autoencoder to jointly learn self-supervised feature representations for style transfer and generate weakly paired source-target trajectories to improve physical realism of synthesised trajectories. We demonstrate the application of our approach based on the case study of robot cutting of unknown materials. Compared to baseline methods, including our previous work, CycleGAN, and conditional variational autoencoder-based time series translation, our approach achieves improved task completion time and behavioural stability with minimal real-world data. Our framework demonstrates robustness to geometric and material variation, and highlights the feasibility of policy adaptation in challenging contact-rich tasks where real-world reward information is unavailable.
3D style transfer enables the creation of visually expressive 3D content, enriching the visual appearance of 3D scenes and objects. However, existing VGG- and CLIP-based methods struggle to model multi-view consistency within the model itself, while diffusion-based approaches can capture such consistency but rely on denoising directions, leading to unstable training. To address these limitations, we propose DiffStyle3D, a novel diffusion-based paradigm for 3DGS style transfer that directly optimizes in the latent space. Specifically, we introduce an Attention-Aware Loss that performs style transfer by aligning style features in the self-attention space, while preserving original content through content feature alignment. Inspired by the geometric invariance of 3D stylization, we propose a Geometry-Guided Multi-View Consistency method that integrates geometric information into self-attention to enable cross-view correspondence modeling. Based on geometric information, we additionally construct a geometry-aware mask to prevent redundant optimization in overlapping regions across views, which further improves multi-view consistency. Extensive experiments show that DiffStyle3D outperforms state-of-the-art methods, achieving higher stylization quality and visual realism.
Synthesizing personalized talking faces that uphold and highlight a speaker's unique style while maintaining lip-sync accuracy remains a significant challenge. A primary limitation of existing approaches is the intrinsic confounding of speaker-specific talking style and semantic content within facial motions, which prevents the faithful transfer of a speaker's unique persona to arbitrary speech. In this paper, we propose MirrorTalk, a generative framework based on a conditional diffusion model, combined with a Semantically-Disentangled Style Encoder (SDSE) that can distill pure style representations from a brief reference video. To effectively utilize this representation, we further introduce a hierarchical modulation strategy within the diffusion process. This mechanism guides the synthesis by dynamically balancing the contributions of audio and style features across distinct facial regions, ensuring both precise lip-sync accuracy and expressive full-face dynamics. Extensive experiments demonstrate that MirrorTalk achieves significant improvements over state-of-the-art methods in terms of lip-sync accuracy and personalization preservation.
Reliable Docker-based environment construction is a dominant bottleneck for scaling execution-grounded training and evaluation of software engineering agents. We introduce DockSmith, a specialized agentic Docker builder designed to address this challenge. DockSmith treats environment construction not only as a preprocessing step, but as a core agentic capability that exercises long-horizon tool use, dependency reasoning, and failure recovery, yielding supervision that transfers beyond Docker building itself. DockSmith is trained on large-scale, execution-grounded Docker-building trajectories produced by a SWE-Factory-style pipeline augmented with a loop-detection controller and a cross-task success memory. Training a 30B-A3B model on these trajectories achieves open-source state-of-the-art performance on Multi-Docker-Eval, with 39.72% Fail-to-Pass and 58.28% Commit Rate. Moreover, DockSmith improves out-of-distribution performance on SWE-bench Verified, SWE-bench Multilingual, and Terminal-Bench 2.0, demonstrating broader agentic benefits of environment construction.
Diffusion models have recently shown strong progress in generative tasks, offering a more stable alternative to GAN-based approaches for makeup transfer. Existing methods often suffer from limited datasets, poor disentanglement between identity and makeup features, and weak controllability. To address these issues, we make three contributions. First, we construct a curated high-quality dataset using a train-generate-filter-retrain strategy that combines synthetic, realistic, and filtered samples to improve diversity and fidelity. Second, we design a diffusion-based framework that disentangles identity and makeup features, ensuring facial structure and skin tone are preserved while applying accurate and diverse cosmetic styles. Third, we propose a text-guided mechanism that allows fine-grained and region-specific control, enabling users to modify eyes, lips, or face makeup with natural language prompts. Experiments on benchmarks and real-world scenarios demonstrate improvements in fidelity, identity preservation, and flexibility. Examples of our dataset can be found at: https://makeup-adapter.github.io.
Deep learning models in medical image analysis often struggle with generalizability across domains and demographic groups due to data heterogeneity and scarcity. Traditional augmentation improves robustness, but fails under substantial domain shifts. Recent advances in stylistic augmentation enhance domain generalization by varying image styles but fall short in terms of style diversity or by introducing artifacts into the generated images. To address these limitations, we propose Stylizing ViT, a novel Vision Transformer encoder that utilizes weight-shared attention blocks for both self- and cross-attention. This design allows the same attention block to maintain anatomical consistency through self-attention while performing style transfer via cross-attention. We assess the effectiveness of our method for domain generalization by employing it for data augmentation on three distinct image classification tasks in the context of histopathology and dermatology. Results demonstrate an improved robustness (up to +13% accuracy) over the state of the art while generating perceptually convincing images without artifacts. Additionally, we show that Stylizing ViT is effective beyond training, achieving a 17% performance improvement during inference when used for test-time augmentation. The source code is available at https://github.com/sdoerrich97/stylizing-vit .
Machine unlearning is a key defense mechanism for removing unauthorized concepts from text-to-image diffusion models, yet recent evidence shows that latent visual information often persists after unlearning. Existing adversarial approaches for exploiting this leakage are constrained by fundamental limitations: optimization-based methods are computationally expensive due to per-instance iterative search. At the same time, reasoning-based and heuristic techniques lack direct feedback from the target model's latent visual representations. To address these challenges, we introduce ReLAPSe, a policy-based adversarial framework that reformulates concept restoration as a reinforcement learning problem. ReLAPSe trains an agent using Reinforcement Learning with Verifiable Rewards (RLVR), leveraging the diffusion model's noise prediction loss as a model-intrinsic and verifiable feedback signal. This closed-loop design directly aligns textual prompt manipulation with latent visual residuals, enabling the agent to learn transferable restoration strategies rather than optimizing isolated prompts. By pioneering the shift from per-instance optimization to global policy learning, ReLAPSe achieves efficient, near-real-time recovery of fine-grained identities and styles across multiple state-of-the-art unlearning methods, providing a scalable tool for rigorous red-teaming of unlearned diffusion models. Some experimental evaluations involve sensitive visual concepts, such as nudity. Code is available at https://github.com/gmum/ReLaPSe
We present Quran MD, a comprehensive multimodal dataset of the Quran that integrates textual, linguistic, and audio dimensions at the verse and word levels. For each verse (ayah), the dataset provides its original Arabic text, English translation, and phonetic transliteration. To capture the rich oral tradition of Quranic recitation, we include verse-level audio from 32 distinct reciters, reflecting diverse recitation styles and dialectical nuances. At the word level, each token is paired with its corresponding Arabic script, English translation, transliteration, and an aligned audio recording, allowing fine-grained analysis of pronunciation, phonology, and semantic context. This dataset supports various applications, including natural language processing, speech recognition, text-to-speech synthesis, linguistic analysis, and digital Islamic studies. Bridging text and audio modalities across multiple reciters, this dataset provides a unique resource to advance computational approaches to Quranic recitation and study. Beyond enabling tasks such as ASR, tajweed detection, and Quranic TTS, it lays the foundation for multimodal embeddings, semantic retrieval, style transfer, and personalized tutoring systems that can support both research and community applications. The dataset is available at https://huggingface.co/datasets/Buraaq/quran-audio-text-dataset
Molecular generative models, often employing GPT-style language modeling on molecular string representations, have shown promising capabilities when scaled to large datasets and model sizes. However, it remains unclear and subject to debate whether these models adhere to predictable scaling laws under fixed computational budgets, which is a crucial understanding for optimally allocating resources between model size, data volume, and molecular representation. In this study, we systematically investigate the scaling behavior of molecular language models across both pretraining and downstream tasks. We train 300 models and conduct over 10,000 experiments, rigorously controlling compute budgets while independently varying model size, number of training tokens, and molecular representation. Our results demonstrate clear scaling laws in molecular models for both pretraining and downstream transfer, reveal the substantial impact of molecular representation on performance, and explain previously observed inconsistencies in scaling behavior for molecular generation. Additionally, we publicly release the largest library of molecular language models to date to facilitate future research and development. Code and models are available at https://github.com/SZU-ADDG/MLM-Scaling.
Recent advances in image editing leverage latent diffusion models (LDMs) for versatile, text-prompt-driven edits across diverse tasks. Yet, maintaining pixel-level edge structures-crucial for tasks such as photorealistic style transfer or image tone adjustment-remains as a challenge for latent-diffusion-based editing. To overcome this limitation, we propose a novel Structure Preservation Loss (SPL) that leverages local linear models to quantify structural differences between input and edited images. Our training-free approach integrates SPL directly into the diffusion model's generative process to ensure structural fidelity. This core mechanism is complemented by a post-processing step to mitigate LDM decoding distortions, a masking strategy for precise edit localization, and a color preservation loss to preserve hues in unedited areas. Experiments confirm SPL enhances structural fidelity, delivering state-of-the-art performance in latent-diffusion-based image editing. Our code will be publicly released at https://github.com/gongms00/SPL.