Abstract:During pretraining, LLMs inadvertently memorize sensitive or copyrighted data, posing significant compliance challenges under legal frameworks like the GDPR and the EU AI Act. Fulfilling these mandates demands techniques that can remove information from a deployed model without retraining from scratch. Existing unlearning approaches attempt to address this need, but often leak the very data they aim to erase, sacrifice fluency and robustness, or depend on costly external reward models. We introduce PURGE (Policy Unlearning through Relative Group Erasure), a novel method grounded in the Group Relative Policy Optimization framework that formulates unlearning as a verifiable problem. PURGE uses an intrinsic reward signal that penalizes any mention of forbidden concepts, allowing safe and consistent unlearning. Our approach reduces token usage per target by up to a factor of 46 compared with SotA methods, while improving fluency by 5.48 percent and adversarial robustness by 12.02 percent over the base model. On the Real World Knowledge Unlearning (RWKU) benchmark, PURGE achieves 11 percent unlearning effectiveness while preserving 98 percent of original utility. PURGE shows that framing LLM unlearning as a verifiable task, enables more reliable, efficient, and scalable forgetting, suggesting a promising new direction for unlearning research that combines theoretical guarantees, improved safety, and practical deployment efficiency.
Abstract:Counterfactual explainability seeks to uncover model decisions by identifying minimal changes to the input that alter the predicted outcome. This task becomes particularly challenging for graph data due to preserving structural integrity and semantic meaning. Unlike prior approaches that rely on forward perturbation mechanisms, we introduce Graph Inverse Style Transfer (GIST), the first framework to re-imagine graph counterfactual generation as a backtracking process, leveraging spectral style transfer. By aligning the global structure with the original input spectrum and preserving local content faithfulness, GIST produces valid counterfactuals as interpolations between the input style and counterfactual content. Tested on 8 binary and multi-class graph classification benchmarks, GIST achieves a remarkable +7.6% improvement in the validity of produced counterfactuals and significant gains (+45.5%) in faithfully explaining the true class distribution. Additionally, GIST's backtracking mechanism effectively mitigates overshooting the underlying predictor's decision boundary, minimizing the spectral differences between the input and the counterfactuals. These results challenge traditional forward perturbation methods, offering a novel perspective that advances graph explainability.
Abstract:As Natural Language Processing (NLP) models continue to evolve and become integral to high-stakes applications, ensuring their interpretability remains a critical challenge. Given the growing variety of explainability methods and diverse stakeholder requirements, frameworks that help stakeholders select appropriate explanations tailored to their specific use cases are increasingly important. To address this need, we introduce EvalxNLP, a Python framework for benchmarking state-of-the-art feature attribution methods for transformer-based NLP models. EvalxNLP integrates eight widely recognized explainability techniques from the Explainable AI (XAI) literature, enabling users to generate and evaluate explanations based on key properties such as faithfulness, plausibility, and complexity. Our framework also provides interactive, LLM-based textual explanations, facilitating user understanding of the generated explanations and evaluation outcomes. Human evaluation results indicate high user satisfaction with EvalxNLP, suggesting it is a promising framework for benchmarking explanation methods across diverse user groups. By offering a user-friendly and extensible platform, EvalxNLP aims at democratizing explainability tools and supporting the systematic comparison and advancement of XAI techniques in NLP.