Abstract:We present AutoBench, a fully automated and self-sustaining framework for evaluating Large Language Models (LLMs) through reciprocal peer assessment. This paper provides a rigorous scientific validation of the AutoBench methodology, originally developed as an open-source project by eZecute S.R.L.. Unlike static benchmarks that suffer from test-set contamination and limited adaptability, AutoBench dynamically generates novel evaluation tasks while models alternately serve as question generators, contestants, and judges across diverse domains. An iterative weighting mechanism amplifies the influence of consistently reliable evaluators, aggregating peer judgments into consensus-based rankings that reflect collective model agreement. Our experiments demonstrate strong correlations with established benchmarks including MMLU-Pro and GPQA (respectively 78\% and 63\%), validating this peer-driven evaluation paradigm. The multi-judge design significantly outperforms single-judge baselines, confirming that distributed evaluation produces more robust and human-consistent assessments. AutoBench offers a scalable, contamination-resistant alternative to static benchmarks for the continuous evaluation of evolving language models.
Abstract:CLIP is a discriminative model trained to align images and text in a shared embedding space. Due to its multimodal structure, it serves as the backbone of many generative pipelines, where a decoder is trained to map from the shared space back to images. In this work, we show that image synthesis is nevertheless possible using CLIP alone -- without any decoder, training, or fine-tuning. Our approach optimizes a frequency-aware implicit neural representation that encourages coarse-to-fine generation by stratifying frequencies across network layers. To stabilize this inverse mapping, we introduce adversarially robust initialization, a lightweight Orthogonal Procrustes projection to align local text and image embeddings, and a blending loss that anchors outputs to natural image statistics. Without altering CLIP's weights, this framework unlocks capabilities such as text-to-image generation, style transfer, and image reconstruction. These findings suggest that discriminative models may hold untapped generative potential, hidden in plain sight.