What is Dehazing? Dehazing is the process of removing haze or fog from images to improve their visibility.
Papers and Code
Mar 17, 2025
Abstract:Optical remote sensing image dehazing presents significant challenges due to its extensive spatial scale and highly non-uniform haze distribution, which traditional single-image dehazing methods struggle to address effectively. While Synthetic Aperture Radar (SAR) imagery offers inherently haze-free reference information for large-scale scenes, existing SAR-guided dehazing approaches face two critical limitations: the integration of SAR information often diminishes the quality of haze-free regions, and the instability of feature quality further exacerbates cross-modal domain shift. To overcome these challenges, we introduce DehazeMamba, a novel SAR-guided dehazing network built on a progressive haze decoupling fusion strategy. Our approach incorporates two key innovations: a Haze Perception and Decoupling Module (HPDM) that dynamically identifies haze-affected regions through optical-SAR difference analysis, and a Progressive Fusion Module (PFM) that mitigates domain shift through a two-stage fusion process based on feature quality assessment. To facilitate research in this domain, we present MRSHaze, a large-scale benchmark dataset comprising 8,000 pairs of temporally synchronized, precisely geo-registered SAR-optical images with high resolution and diverse haze conditions. Extensive experiments demonstrate that DehazeMamba significantly outperforms state-of-the-art methods, achieving a 0.73 dB improvement in PSNR and substantial enhancements in downstream tasks such as semantic segmentation. The dataset is available at https://github.com/mmic-lcl/Datasets-and-benchmark-code.
Via

Mar 11, 2025
Abstract:Nighttime image dehazing is particularly challenging when dense haze and intense glow severely degrade or completely obscure background information. Existing methods often encounter difficulties due to insufficient background priors and limited generative ability, both essential for handling such conditions. In this paper, we introduce BeyondHaze, a generative nighttime dehazing method that not only significantly reduces haze and glow effects but also infers background information in regions where it may be absent. Our approach is developed on two main ideas: gaining strong background priors by adapting image diffusion models to the nighttime dehazing problem, and enhancing generative ability for haze- and glow-obscured scene areas through guided training. Task-specific nighttime dehazing knowledge is distilled into an image diffusion model in a manner that preserves its capacity to generate clean images. The diffusion model is additionally trained on image pairs designed to improve its ability to generate background details and content that are missing in the input image due to haze effects. Since generative models are susceptible to hallucinations, we develop our framework to allow user control over the generative level, balancing visual realism and factual accuracy. Experiments on real-world images demonstrate that BeyondHaze effectively restores visibility in dense nighttime haze.
Via

Mar 08, 2025
Abstract:This paper presents a novel approach to image dehazing by combining Feature Fusion Attention (FFA) networks with CycleGAN architecture. Our method leverages both supervised and unsupervised learning techniques to effectively remove haze from images while preserving crucial image details. The proposed hybrid architecture demonstrates significant improvements in image quality metrics, achieving superior PSNR and SSIM scores compared to traditional dehazing methods. Through extensive experimentation on the RESIDE and DenseHaze CVPR 2019 dataset, we show that our approach effectively handles both synthetic and real-world hazy images. CycleGAN handles the unpaired nature of hazy and clean images effectively, enabling the model to learn mappings even without paired data.
Via

Mar 03, 2025
Abstract:Image dehazing is a crucial task that involves the enhancement of degraded images to recover their sharpness and textures. While vision Transformers have exhibited impressive results in diverse dehazing tasks, their quadratic complexity and lack of dehazing priors pose significant drawbacks for real-world applications. In this paper, guided by triple priors, Bright Channel Prior (BCP), Dark Channel Prior (DCP), and Histogram Equalization (HE), we propose a \textit{P}rior-\textit{g}uided Hierarchical \textit{H}armonization Network (PGH$^2$Net) for image dehazing. PGH$^2$Net is built upon the UNet-like architecture with an efficient encoder and decoder, consisting of two module types: (1) Prior aggregation module that injects B/DCP and selects diverse contexts with gating attention. (2) Feature harmonization modules that subtract low-frequency components from spatial and channel aspects and learn more informative feature distributions to equalize the feature maps.
Via

Feb 11, 2025
Abstract:Salient object detection (SOD) plays a critical role in vision-driven measurement systems (VMS), facilitating the detection and segmentation of key visual elements in an image. However, adverse imaging conditions such as haze during the day, low light, and haze at night severely degrade image quality, and complicating the SOD process. To address these challenges, we propose a multi-task-oriented nighttime haze imaging enhancer (MToIE), which integrates three tasks: daytime dehazing, low-light enhancement, and nighttime dehazing. The MToIE incorporates two key innovative components: First, the network employs a task-oriented node learning mechanism to handle three specific degradation types: day-time haze, low light, and night-time haze conditions, with an embedded self-attention module enhancing its performance in nighttime imaging. In addition, multi-receptive field enhancement module that efficiently extracts multi-scale features through three parallel depthwise separable convolution branches with different dilation rates, capturing comprehensive spatial information with minimal computational overhead. To ensure optimal image reconstruction quality and visual characteristics, we suggest a hybrid loss function. Extensive experiments on different types of weather/imaging conditions illustrate that MToIE surpasses existing methods, significantly enhancing the accuracy and reliability of vision systems across diverse imaging scenarios. The code is available at https://github.com/Ai-Chen-Lab/MToIE.
Via

Feb 08, 2025
Abstract:This paper proposes an innovative framework for Unsupervised Image Dehazing via Kolmogorov-Arnold Transformation, termed UID-KAT. Image dehazing is recognized as a challenging and ill-posed vision task that requires complex transformations and interpretations in the feature space. Recent advancements have introduced Kolmogorov-Arnold Networks (KANs), inspired by the Kolmogorov-Arnold representation theorem, as promising alternatives to Multi-Layer Perceptrons (MLPs) since KANs can leverage their polynomial foundation to more efficiently approximate complex functions while requiring fewer layers than MLPs. Motivated by this potential, this paper explores the use of KANs combined with adversarial training and contrastive learning to model the intricate relationship between hazy and clear images. Adversarial training is employed due to its capacity in producing high-fidelity images, and contrastive learning promotes the model's emphasis on significant features while suppressing the influence of irrelevant information. The proposed UID-KAT framework is trained in an unsupervised setting to take advantage of the abundance of real-world data and address the challenge of preparing paired hazy/clean images. Experimental results show that UID-KAT achieves state-of-the-art dehazing performance across multiple datasets and scenarios, outperforming existing unpaired methods while reducing model complexity. The source code for this work is publicly available at https://github.com/tranleanh/uid-kat.
* 11 pages, 8 figures
Via

Feb 04, 2025
Abstract:This study explores the challenges of integrating human visual cue-based dehazing into object detection, given the selective nature of human perception. While human vision adapts dynamically to environmental conditions, computational dehazing does not always enhance detection uniformly. We propose a multi-stage framework where a lightweight detector identifies regions of interest (RoIs), which are then enhanced via spatial attention-based dehazing before final detection by a heavier model. Though effective in foggy conditions, this approach unexpectedly degrades the performance on clear images. We analyze this phenomenon, investigate possible causes, and offer insights for designing hybrid pipelines that balance enhancement and detection. Our findings highlight the need for selective preprocessing and challenge assumptions about universal benefits from cascading transformations.
* arXiv admin note: substantial text overlap with arXiv:2410.01225
Via

Feb 03, 2025
Abstract:Blind dehazed image quality assessment (BDQA), which aims to accurately predict the visual quality of dehazed images without any reference information, is essential for the evaluation, comparison, and optimization of image dehazing algorithms. Existing learning-based BDQA methods have achieved remarkable success, while the small scale of DQA datasets limits their performance. To address this issue, in this paper, we propose to adapt Contrastive Language-Image Pre-Training (CLIP), pre-trained on large-scale image-text pairs, to the BDQA task. Specifically, inspired by the fact that the human visual system understands images based on hierarchical features, we take global and local information of the dehazed image as the input of CLIP. To accurately map the input hierarchical information of dehazed images into the quality score, we tune both the vision branch and language branch of CLIP with prompt learning. Experimental results on two authentic DQA datasets demonstrate that our proposed approach, named CLIP-DQA, achieves more accurate quality predictions over existing BDQA methods. The code is available at https://github.com/JunFu1995/CLIP-DQA.
* Accepted by ISCAS 2025 (Oral)
Via

Jan 12, 2025
Abstract:Image dehazing techniques aim to enhance contrast and restore details, which are essential for preserving visual information and improving image processing accuracy. Existing methods rely on a single manual prior, which cannot effectively reveal image details. To overcome this limitation, we propose an unpaired image dehazing network, called the Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior (UR2P-Dehaze). First, to accurately estimate the illumination, reflectance, and color information of the hazy image, we design a shared prior estimator (SPE) that is iteratively trained to ensure the consistency of illumination and reflectance, generating clear, high-quality images. Additionally, a self-monitoring mechanism is introduced to eliminate undesirable features, providing reliable priors for image reconstruction. Next, we propose Dynamic Wavelet Separable Convolution (DWSC), which effectively integrates key features across both low and high frequencies, significantly enhancing the preservation of image details and ensuring global consistency. Finally, to effectively restore the color information of the image, we propose an Adaptive Color Corrector that addresses the problem of unclear colors. The PSNR, SSIM, LPIPS, FID and CIEDE2000 metrics on the benchmark dataset show that our method achieves state-of-the-art performance. It also contributes to the performance improvement of downstream tasks. The project code will be available at https://github.com/Fan-pixel/UR2P-Dehaze. \end{abstract}
Via

Jan 08, 2025
Abstract:Recently, Transformer networks have demonstrated outstanding performance in the field of image restoration due to the global receptive field and adaptability to input. However, the quadratic computational complexity of Softmax-attention poses a significant limitation on its extensive application in image restoration tasks, particularly for high-resolution images. To tackle this challenge, we propose a novel variant of the Transformer. This variant leverages the Taylor expansion to approximate the Softmax-attention and utilizes the concept of norm-preserving mapping to approximate the remainder of the first-order Taylor expansion, resulting in a linear computational complexity. Moreover, we introduce a multi-branch architecture featuring multi-scale patch embedding into the proposed Transformer, which has four distinct advantages: 1) various sizes of the receptive field; 2) multi-level semantic information; 3) flexible shapes of the receptive field; 4) accelerated training and inference speed. Hence, the proposed model, named the second version of Taylor formula expansion-based Transformer (for short MB-TaylorFormer V2) has the capability to concurrently process coarse-to-fine features, capture long-distance pixel interactions with limited computational cost, and improve the approximation of the Taylor expansion remainder. Experimental results across diverse image restoration benchmarks demonstrate that MB-TaylorFormer V2 achieves state-of-the-art performance in multiple image restoration tasks, such as image dehazing, deraining, desnowing, motion deblurring, and denoising, with very little computational overhead. The source code is available at https://github.com/FVL2020/MB-TaylorFormerV2.
Via
