Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
This paper presents Seewo's systems for both tracks of the Multilingual Conversational Speech Language Model Challenge (MLC-SLM), addressing automatic speech recognition (ASR) and speaker diarization with ASR (SD-ASR). We introduce a multi-stage training pipeline that explicitly enhances reasoning and self-correction in speech language models for ASR. Our approach combines curriculum learning for progressive capability acquisition, Chain-of-Thought data augmentation to foster intermediate reflection, and Reinforcement Learning with Verifiable Rewards (RLVR) to further refine self-correction through reward-driven optimization. This approach achieves substantial improvements over the official challenge baselines. On the evaluation set, our best system attains a WER/CER of 11.57% for Track 1 and a tcpWER/tcpCER of 17.67% for Track 2. Comprehensive ablation studies demonstrate the effectiveness of each component under challenge constraints.
Given the increasing privacy concerns from identity theft and the re-identification of speakers through content in the speech field, this paper proposes a prompt-based speech generation pipeline that ensures dual anonymization of both speaker identity and spoken content. This is addressed through 1) generating a speaker identity unlinkable to the source speaker, controlled by descriptors, and 2) replacing sensitive content within the original text using a name entity recognition model and a large language model. The pipeline utilizes the anonymized speaker identity and text to generate high-fidelity, privacy-friendly speech via a text-to-speech synthesis model. Experimental results demonstrate an achievement of significant privacy protection while maintaining a decent level of content retention and audio quality. This paper also investigates the impact of varying speaker descriptions on the utility and privacy of generated speech to determine potential biases.
This paper introduces the integration of language-specific bi-directional context into a speech large language model (SLLM) to improve multilingual continuous conversational automatic speech recognition (ASR). We propose a character-level contextual masking strategy during training, which randomly removes portions of the context to enhance robustness and better emulate the flawed transcriptions that may occur during inference. For decoding, a two-stage pipeline is utilized: initial isolated segment decoding followed by context-aware re-decoding using neighboring hypotheses. Evaluated on the 1500-hour Multilingual Conversational Speech and Language Model (MLC-SLM) corpus covering eleven languages, our method achieves an 18% relative improvement compared to a strong baseline, outperforming even the model trained on 6000 hours of data for the MLC-SLM competition. These results underscore the significant benefit of incorporating contextual information in multilingual continuous conversational ASR.




There has been increasing interest in unifying streaming and non-streaming automatic speech recognition (ASR) models to reduce development, training, and deployment costs. We present a unified framework that trains a single end-to-end ASR model for both streaming and non-streaming applications, leveraging future context information. We propose to use dynamic right-context through the chunked attention masking in the training of zipformer-based ASR models. We demonstrate that using right-context is more effective in zipformer models compared to other conformer models due to its multi-scale nature. We analyze the effect of varying the number of right-context frames on accuracy and latency of the streaming ASR models. We use Librispeech and large in-house conversational datasets to train different versions of streaming and non-streaming models and evaluate them in a production grade server-client setup across diverse testsets of different domains. The proposed strategy reduces word error by relative 7.9\% with a small degradation in user-perceived latency. By adding more right-context frames, we are able to achieve streaming performance close to that of non-streaming models. Our approach also allows flexible control of the latency-accuracy tradeoff according to customers requirements.
We present a two-speaker automatic speech recognition (ASR) system that combines DiCoW -- a diarization-conditioned variant of Whisper -- with DiariZen, a diarization pipeline built on top of Pyannote. We first evaluate both systems in out-of-domain (OOD) multilingual scenarios without any fine-tuning. In this scenario, DiariZen consistently outperforms the baseline Pyannote diarization model, demonstrating strong generalization. Despite being fine-tuned on English-only data for target-speaker ASR, DiCoW retains solid multilingual performance, indicating that encoder modifications preserve Whisper's multilingual capabilities. We then fine-tune both DiCoW and DiariZen on the MLC-SLM challenge data. The fine-tuned DiariZen continues to outperform the fine-tuned Pyannote baseline, while DiCoW sees further gains from domain adaptation. Our final system achieves a micro-average tcpWER/CER of 16.75% and ranks second in Task 2 of the MLC-SLM challenge. Lastly, we identify several labeling inconsistencies in the training data -- such as missing speech segments and incorrect silence annotations -- which can hinder diarization fine-tuning. We propose simple mitigation strategies to address these issues and improve system robustness.
Automatic Speech Recognition systems have made significant progress with large-scale pre-trained models. However, most current systems focus solely on transcribing the speech without identifying speaker roles, a function that is critical for conversational AI. In this work, we investigate the use of serialized output training (SOT) for joint ASR and speaker role tagging. By augmenting Whisper with role-specific tokens and fine-tuning it with SOT, we enable the model to generate role-aware transcriptions in a single decoding pass. We compare the SOT approach against a self-supervised previous baseline method on two real-world conversational datasets. Our findings show that this approach achieves more than 10% reduction in multi-talker WER, demonstrating its feasibility as a unified model for speaker-role aware speech transcription.
With recent advances in modeling and the increasing amount of supervised training data, automatic speech recognition (ASR) systems have achieved remarkable performance on general speech. However, the word error rate (WER) of state-of-the-art ASR remains high for named entities. Since named entities are often the most critical keywords, misrecognizing them can affect all downstream applications, especially when the ASR system functions as the front end of a complex system. In this paper, we introduce a large language model (LLM) revision mechanism to revise incorrect named entities in ASR predictions by leveraging the LLM's reasoning ability as well as local context (e.g., lecture notes) containing a set of correct named entities. Finally, we introduce the NER-MIT-OpenCourseWare dataset, containing 45 hours of data from MIT courses for development and testing. On this dataset, our proposed technique achieves up to 30\% relative WER reduction for named entities.
Automatic lyrics transcription (ALT) remains a challenging task in the field of music information retrieval, despite great advances in automatic speech recognition (ASR) brought about by transformer-based architectures in recent years. One of the major challenges in ALT is the high amplitude of interfering audio signals relative to conventional ASR due to musical accompaniment. Recent advances in music source separation have enabled automatic extraction of high-quality separated vocals, which could potentially improve ALT performance. However, the effect of source separation has not been systematically investigated in order to establish best practices for its use. This work examines the impact of source separation on ALT using Whisper, a state-of-the-art open source ASR model. We evaluate Whisper's performance on original audio, separated vocals, and vocal stems across short-form and long-form transcription tasks. For short-form, we suggest a concatenation method that results in a consistent reduction in Word Error Rate (WER). For long-form, we propose an algorithm using source separation as a vocal activity detector to derive segment boundaries, which results in a consistent reduction in WER relative to Whisper's native long-form algorithm. Our approach achieves state-of-the-art results for an open source system on the Jam-ALT long-form ALT benchmark, without any training or fine-tuning. We also publish MUSDB-ALT, the first dataset of long-form lyric transcripts following the Jam-ALT guidelines for which vocal stems are publicly available.




We present DeRAGEC, a method for improving Named Entity (NE) correction in Automatic Speech Recognition (ASR) systems. By extending the Retrieval-Augmented Generative Error Correction (RAGEC) framework, DeRAGEC employs synthetic denoising rationales to filter out noisy NE candidates before correction. By leveraging phonetic similarity and augmented definitions, it refines noisy retrieved NEs using in-context learning, requiring no additional training. Experimental results on CommonVoice and STOP datasets show significant improvements in Word Error Rate (WER) and NE hit ratio, outperforming baseline ASR and RAGEC methods. Specifically, we achieved a 28% relative reduction in WER compared to ASR without postprocessing. Our source code is publicly available at: https://github.com/solee0022/deragec
Small-Footprint Keyword Spotting (SF-KWS) has gained popularity in today's landscape of smart voice-activated devices, smartphones, and Internet of Things (IoT) applications. This surge is attributed to the advancements in Deep Learning, enabling the identification of predefined words or keywords from a continuous stream of words. To implement the SF-KWS model on edge devices with low power and limited memory in real-world scenarios, a efficient Tiny Machine Learning (TinyML) framework is essential. In this study, we explore seven distinct categories of techniques namely, Model Architecture, Learning Techniques, Model Compression, Attention Awareness Architecture, Feature Optimization, Neural Network Search, and Hybrid Approaches, which are suitable for developing an SF-KWS system. This comprehensive overview will serve as a valuable resource for those looking to understand, utilize, or contribute to the field of SF-KWS. The analysis conducted in this work enables the identification of numerous potential research directions, encompassing insights from automatic speech recognition research and those specifically pertinent to the realm of spoken SF-KWS.