What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
May 29, 2025
Abstract:This paper discusses the construction, fine-tuning, and deployment of BeaverTalk, a cascaded system for speech-to-text translation as part of the IWSLT 2025 simultaneous translation task. The system architecture employs a VAD segmenter for breaking a speech stream into segments, Whisper Large V2 for automatic speech recognition (ASR), and Gemma 3 12B for simultaneous translation. Regarding the simultaneous translation LLM, it is fine-tuned via low-rank adaptors (LoRAs) for a conversational prompting strategy that leverages a single prior-sentence memory bank from the source language as context. The cascaded system participated in the English$\rightarrow$German and English$\rightarrow$Chinese language directions for both the low and high latency regimes. In particular, on the English$\rightarrow$German task, the system achieves a BLEU of 24.64 and 27.83 at a StreamLAAL of 1837.86 and 3343.73, respectively. Then, on the English$\rightarrow$Chinese task, the system achieves a BLEU of 34.07 and 37.23 at a StreamLAAL of 2216.99 and 3521.35, respectively.
* Accepted at IWSLT 2025
Via

May 30, 2025
Abstract:Although speech emotion recognition (SER) has advanced significantly with deep learning, annotation remains a major hurdle. Human annotation is not only costly but also subject to inconsistencies annotators often have different preferences and may lack the necessary contextual knowledge, which can lead to varied and inaccurate labels. Meanwhile, Large Language Models (LLMs) have emerged as a scalable alternative for annotating text data. However, the potential of LLMs to perform emotional speech data annotation without human supervision has yet to be thoroughly investigated. To address these problems, we apply GPT-4o to annotate a multimodal dataset collected from the sitcom Friends, using only textual cues as inputs. By crafting structured text prompts, our methodology capitalizes on the knowledge GPT-4o has accumulated during its training, showcasing that it can generate accurate and contextually relevant annotations without direct access to multimodal inputs. Therefore, we propose MELT, a multimodal emotion dataset fully annotated by GPT-4o. We demonstrate the effectiveness of MELT by fine-tuning four self-supervised learning (SSL) backbones and assessing speech emotion recognition performance across emotion datasets. Additionally, our subjective experiments\' results demonstrate a consistence performance improvement on SER.
Via

May 27, 2025
Abstract:Whisper's robust performance in automatic speech recognition (ASR) is often attributed to its massive 680k-hour training set, an impractical scale for most researchers. In this work, we examine how linguistic and acoustic diversity in training data affect the robustness of the ASR model and reveal that transcription generalization is primarily driven by acoustic variation rather than linguistic richness. We find that targeted acoustic augmentation methods could significantly improve the generalization ability of ASR models, reducing word-error rates by up to 19.24 percent on unseen datasets when training on the 960-hour Librispeech dataset. These findings highlight strategic acoustically focused data augmentation as a promising alternative to massive datasets for building robust ASR models, offering a potential solution to future foundation ASR models when massive human speech data is lacking.
* in submission
Via

May 28, 2025
Abstract:Statistical n-gram language models are widely used for context-biasing tasks in Automatic Speech Recognition (ASR). However, existing implementations lack computational efficiency due to poor parallelization, making context-biasing less appealing for industrial use. This work rethinks data structures for statistical n-gram language models to enable fast and parallel operations for GPU-optimized inference. Our approach, named NGPU-LM, introduces customizable greedy decoding for all major ASR model types - including transducers, attention encoder-decoder models, and CTC - with less than 7% computational overhead. The proposed approach can eliminate more than 50% of the accuracy gap between greedy and beam search for out-of-domain scenarios while avoiding significant slowdown caused by beam search. The implementation of the proposed NGPU-LM is open-sourced.
* Accepted to Interspeech 2025
Via

May 28, 2025
Abstract:This paper presents the system developed to address the MISP 2025 Challenge. For the diarization system, we proposed a hybrid approach combining a WavLM end-to-end segmentation method with a traditional multi-module clustering technique to adaptively select the appropriate model for handling varying degrees of overlapping speech. For the automatic speech recognition (ASR) system, we proposed an ASR-aware observation addition method that compensates for the performance limitations of Guided Source Separation (GSS) under low signal-to-noise ratio conditions. Finally, we integrated the speaker diarization and ASR systems in a cascaded architecture to address Track 3. Our system achieved character error rates (CER) of 9.48% on Track 2 and concatenated minimum permutation character error rate (cpCER) of 11.56% on Track 3, ultimately securing first place in both tracks and thereby demonstrating the effectiveness of the proposed methods in real-world meeting scenarios.
* Accepted to Interspeech 2025
Via

May 28, 2025
Abstract:Despite remarkable achievements, automatic speech recognition (ASR) in low-resource scenarios still faces two challenges: high-quality data scarcity and high computational demands. This paper proposes EThai-ASR, the first to apply large language models (LLMs) to Thai ASR and create an efficient LLM-based ASR system. EThai-ASR comprises a speech encoder, a connection module and a Thai LLM decoder. To address the data scarcity and obtain a powerful speech encoder, EThai-ASR introduces a self-evolving data refinement strategy to refine weak labels, yielding an enhanced speech encoder. Moreover, we propose a pluggable sequence compression module used in the connection module with three modes designed to reduce the sequence length, thus decreasing computational demands while maintaining decent performance. Extensive experiments demonstrate that EThai-ASR has achieved state-of-the-art accuracy in multiple datasets. We release our refined text transcripts to promote further research.
* Accepted by INTERSPEECH 2025
Via

May 28, 2025
Abstract:Traditional audiometry often fails to fully characterize the functional impact of hearing loss on speech understanding, particularly supra-threshold deficits and frequency-specific perception challenges in conditions like presbycusis. This paper presents the development and simulated evaluation of a novel Automatic Speech Recognition (ASR)-based frequency-specific speech test designed to provide granular diagnostic insights. Our approach leverages ASR to simulate the perceptual effects of moderate sloping hearing loss by processing speech stimuli under controlled acoustic degradation and subsequently analyzing phoneme-level confusion patterns. Key findings indicate that simulated hearing loss introduces specific phoneme confusions, predominantly affecting high-frequency consonants (e.g., alveolar/palatal to labiodental substitutions) and leading to significant phoneme deletions, consistent with the acoustic cues degraded in presbycusis. A test battery curated from these ASR-derived confusions demonstrated diagnostic value, effectively differentiating between simulated normal-hearing and hearing-impaired listeners in a comprehensive simulation. This ASR-driven methodology offers a promising avenue for developing objective, granular, and frequency-specific hearing assessment tools that complement traditional audiometry. Future work will focus on validating these findings with human participants and exploring the integration of advanced AI models for enhanced diagnostic precision.
Via

Jun 07, 2025
Abstract:While deep learning models have demonstrated robust performance in speaker recognition tasks, they primarily rely on low-level audio features learned empirically from spectrograms or raw waveforms. However, prior work has indicated that idiosyncratic speaking styles heavily influence the temporal structure of linguistic units in speech signals (rhythm). This makes rhythm a strong yet largely overlooked candidate for a speech identity feature. In this paper, we test this hypothesis by applying deep learning methods to perform text-independent speaker identification from rhythm features. Our findings support the usefulness of rhythmic information for speaker recognition tasks but also suggest that high intra-subject variability in ad-hoc speech can degrade its effectiveness.
Via

Jun 04, 2025
Abstract:Cued Speech (CS) enhances lipreading through hand coding, providing precise speech perception support for the hearing-impaired. CS Video-to-Speech generation (CSV2S) task aims to convert the CS visual expressions (CS videos) of hearing-impaired individuals into comprehensible speech signals. Direct generation of speech from CS video (called single CSV2S) yields poor performance due to insufficient CS data. Current research mostly focuses on CS Recognition (CSR), which convert video content into linguistic text. Based on this, one straightforward way of CSV2S is to combine CSR with a Text-to-Speech system. This combined architecture relies on text as an intermediate medium for stepwise cross-modal alignment, which may lead to error propagation and temporal misalignment between speech and video dynamics. To address these challenges, we propose a novel approach that directly generates speech from CS videos without relying on intermediate text. Building upon this, we propose UniCUE, the first unified framework for CSV2S, whose core innovation lies in the integration of the CSR task that provides fine-grained visual-semantic information to facilitate speech generation from CS videos. More precisely, (1) a novel fine-grained semantic alignment pool to ensure precise mapping between visual features and speech contents; (2) a VisioPhonetic adapter to bridge cross-task representations, ensuring seamless compatibility between two distinct tasks (i.e., CSV2S and CSR); (3) a pose-aware visual processor is introduced to enhance fine-grained spatiotemporal correlations between lip and hand movements in CS video. Experiments on our new established Chinese CS dataset (14 cuers1: 8 hearing-impaired and 6 normal-hearing) show that our UniCUE significantly reduces Word Error Rate by 78.3% and improves lip-speech synchronization by 32% compared to the single CSV2S.
* 10 pages, 10 figures
Via

May 28, 2025
Abstract:Speech emotion recognition (SER), particularly for naturally expressed emotions, remains a challenging computational task. Key challenges include the inherent subjectivity in emotion annotation and the imbalanced distribution of emotion labels in datasets. This paper introduces the \texttt{SAILER} system developed for participation in the INTERSPEECH 2025 Emotion Recognition Challenge (Task 1). The challenge dataset, which contains natural emotional speech from podcasts, serves as a valuable resource for studying imbalanced and subjective emotion annotations. Our system is designed to be simple, reproducible, and effective, highlighting critical choices in modeling, learning objectives, data augmentation, and engineering choices. Results show that even a single system (without ensembling) can outperform more than 95\% of the submissions, with a Macro-F1 score exceeding 0.4. Moreover, an ensemble of three systems further improves performance, achieving a competitively ranked score (top-3 performing team). Our model is at: https://github.com/tiantiaf0627/vox-profile-release.
* Accepted to INTERSPEECH 2025
Via
