Abstract:There has been increasing interest in unifying streaming and non-streaming automatic speech recognition (ASR) models to reduce development, training, and deployment costs. We present a unified framework that trains a single end-to-end ASR model for both streaming and non-streaming applications, leveraging future context information. We propose to use dynamic right-context through the chunked attention masking in the training of zipformer-based ASR models. We demonstrate that using right-context is more effective in zipformer models compared to other conformer models due to its multi-scale nature. We analyze the effect of varying the number of right-context frames on accuracy and latency of the streaming ASR models. We use Librispeech and large in-house conversational datasets to train different versions of streaming and non-streaming models and evaluate them in a production grade server-client setup across diverse testsets of different domains. The proposed strategy reduces word error by relative 7.9\% with a small degradation in user-perceived latency. By adding more right-context frames, we are able to achieve streaming performance close to that of non-streaming models. Our approach also allows flexible control of the latency-accuracy tradeoff according to customers requirements.
Abstract:New-age conversational agent systems perform both speech emotion recognition (SER) and automatic speech recognition (ASR) using two separate and often independent approaches for real-world application in noisy environments. In this paper, we investigate a joint ASR-SER multitask learning approach in a low-resource setting and show that improvements are observed not only in SER, but also in ASR. We also investigate the robustness of such jointly trained models to the presence of background noise, babble, and music. Experimental results on the IEMOCAP dataset show that joint learning can improve ASR word error rate (WER) and SER classification accuracy by 10.7% and 2.3% respectively in clean scenarios. In noisy scenarios, results on data augmented with MUSAN show that the joint approach outperforms the independent ASR and SER approaches across many noisy conditions. Overall, the joint ASR-SER approach yielded more noise-resistant models than the independent ASR and SER approaches.