Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
3D meshes are a fundamental representation widely used in computer science and engineering. In robotics, they are particularly valuable because they capture objects in a form that aligns directly with how robots interact with the physical world, enabling core capabilities such as predicting stable grasps, detecting collisions, and simulating dynamics. Although automatic 3D mesh generation methods have shown promising progress in recent years, potentially offering a path toward real-time robot perception, two critical challenges remain. First, generating high-fidelity meshes is prohibitively slow for real-time use, often requiring tens of seconds per object. Second, mesh generation by itself is insufficient. In robotics, a mesh must be contextually grounded, i.e., correctly segmented from the scene and registered with the proper scale and pose. Additionally, unless these contextual grounding steps remain efficient, they simply introduce new bottlenecks. In this work, we introduce an end-to-end system that addresses these challenges, producing a high-quality, contextually grounded 3D mesh from a single RGB-D image in under one second. Our pipeline integrates open-vocabulary object segmentation, accelerated diffusion-based mesh generation, and robust point cloud registration, each optimized for both speed and accuracy. We demonstrate its effectiveness in a real-world manipulation task, showing that it enables meshes to be used as a practical, on-demand representation for robotics perception and planning.
Proficiency in microanastomosis is a critical surgical skill in neurosurgery, where the ability to precisely manipulate fine instruments is crucial to successful outcomes. These procedures require sustained attention, coordinated hand movements, and highly refined motor skills, underscoring the need for objective and systematic methods to evaluate and enhance microsurgical training. Conventional assessment approaches typically rely on expert raters supervising the procedures or reviewing surgical videos, which is an inherently subjective process prone to inter-rater variability, inconsistency, and significant time investment. These limitations highlight the necessity for automated and scalable solutions. To address this challenge, we introduce a novel AI-driven framework for automated action segmentation and performance assessment in microanastomosis procedures, designed to operate efficiently on edge computing platforms. The proposed system comprises three main components: (1) an object tip tracking and localization module based on YOLO and DeepSORT; (2) an action segmentation module leveraging self-similarity matrix for action boundary detection and unsupervised clustering; and (3) a supervised classification module designed to evaluate surgical gesture proficiency. Experimental validation on a dataset of 58 expert-rated microanastomosis videos demonstrates the effectiveness of our approach, achieving a frame-level action segmentation accuracy of 92.4% and an overall skill classification accuracy of 85.5% in replicating expert evaluations. These findings demonstrate the potential of the proposed method to provide objective, real-time feedback in microsurgical education, thereby enabling more standardized, data-driven training protocols and advancing competency assessment in high-stakes surgical environments.
Marine visual understanding is essential for monitoring and protecting marine ecosystems, enabling automatic and scalable biological surveys. However, progress is hindered by limited training data and the lack of a systematic task formulation that aligns domain-specific marine challenges with well-defined computer vision tasks, thereby limiting effective model application. To address this gap, we present ORCA, a multi-modal benchmark for marine research comprising 14,647 images from 478 species, with 42,217 bounding box annotations and 22,321 expert-verified instance captions. The dataset provides fine-grained visual and textual annotations that capture morphology-oriented attributes across diverse marine species. To catalyze methodological advances, we evaluate 18 state-of-the-art models on three tasks: object detection (closed-set and open-vocabulary), instance captioning, and visual grounding. Results highlight key challenges, including species diversity, morphological overlap, and specialized domain demands, underscoring the difficulty of marine understanding. ORCA thus establishes a comprehensive benchmark to advance research in marine domain. Project Page: http://orca.hkustvgd.com/.




Cell detection in pathological images presents unique challenges due to densely packed objects, subtle inter-class differences, and severe background clutter. In this paper, we propose CellMamba, a lightweight and accurate one-stage detector tailored for fine-grained biomedical instance detection. Built upon a VSSD backbone, CellMamba integrates CellMamba Blocks, which couple either NC-Mamba or Multi-Head Self-Attention (MSA) with a novel Triple-Mapping Adaptive Coupling (TMAC) module. TMAC enhances spatial discriminability by splitting channels into two parallel branches, equipped with dual idiosyncratic and one consensus attention map, adaptively fused to preserve local sensitivity and global consistency. Furthermore, we design an Adaptive Mamba Head that fuses multi-scale features via learnable weights for robust detection under varying object sizes. Extensive experiments on two public datasets-CoNSeP and CytoDArk0-demonstrate that CellMamba outperforms both CNN-based, Transformer-based, and Mamba-based baselines in accuracy, while significantly reducing model size and inference latency. Our results validate CellMamba as an efficient and effective solution for high-resolution cell detection.
Tabular log abstracts objects and events in the real-world system and reports their updates to reflect the change of the system, where one can detect real-world inconsistencies efficiently by debugging corresponding log entries. However, recent advances in processing text-enriched tabular log data overly depend on large language models (LLMs) and other heavy-load models, thus suffering from limited flexibility and scalability. This paper proposes a new framework, GraphLogDebugger, to debug tabular log based on dynamic graphs. By constructing heterogeneous nodes for objects and events and connecting node-wise edges, the framework recovers the system behind the tabular log as an evolving dynamic graph. With the help of our dynamic graph modeling, a simple dynamic Graph Neural Network (GNN) is representative enough to outperform LLMs in debugging tabular log, which is validated by experimental results on real-world log datasets of computer systems and academic papers.
Camera calibration is an essential prerequisite for event-based vision applications. Current event camera calibration methods typically involve using flashing patterns, reconstructing intensity images, and utilizing the features extracted from events. Existing methods are generally time-consuming and require manually placed calibration objects, which cannot meet the needs of rapidly changing scenarios. In this paper, we propose a line-based event camera calibration framework exploiting the geometric lines of commonly-encountered objects in man-made environments, e.g., doors, windows, boxes, etc. Different from previous methods, our method detects lines directly from event streams and leverages an event-line calibration model to generate the initial guess of camera parameters, which is suitable for both planar and non-planar lines. Then, a non-linear optimization is adopted to refine camera parameters. Both simulation and real-world experiments have demonstrated the feasibility and accuracy of our method, with validation performed on monocular and stereo event cameras. The source code is released at https://github.com/Zibin6/line_based_event_camera_calib.
Real-world Constrained Multi-objective Optimization Problems (CMOPs) often contain multiple constraints, and understanding and utilizing the coupling between these constraints is crucial for solving CMOPs. However, existing Constrained Multi-objective Evolutionary Algorithms (CMOEAs) typically ignore these couplings and treat all constraints as a single aggregate, which lacks interpretability regarding the specific geometric roles of constraints. To address this limitation, we first analyze how different constraints interact and show that the final Constrained Pareto Front (CPF) depends not only on the Pareto fronts of individual constraints but also on the boundaries of infeasible regions. This insight implies that CMOPs with different coupling types must be solved from different search directions. Accordingly, we propose a novel algorithm named Decoupling Constraint from Two Directions (DCF2D). This method periodically detects constraint couplings and spawns an auxiliary population for each relevant constraint with an appropriate search direction. Extensive experiments on seven challenging CMOP benchmark suites and on a collection of real-world CMOPs demonstrate that DCF2D outperforms five state-of-the-art CMOEAs, including existing decoupling-based methods.
The challenge of imbalanced data is prominent in medical image classification. This challenge arises when there is a significant disparity in the number of images belonging to a particular class, such as the presence or absence of a specific disease, as compared to the number of images belonging to other classes. This issue is especially notable during pandemics, which may result in an even more significant imbalance in the dataset. Researchers have employed various approaches in recent years to detect COVID-19 infected individuals accurately and quickly, with artificial intelligence and machine learning algorithms at the forefront. However, the lack of sufficient and balanced data remains a significant obstacle to these methods. This study addresses the challenge by proposing a progressive generative adversarial network to generate synthetic data to supplement the real ones. The proposed method suggests a weighted approach to combine synthetic data with real ones before inputting it into a deep network classifier. A multi-objective meta-heuristic population-based optimization algorithm is employed to optimize the hyper-parameters of the classifier. The proposed model exhibits superior cross-validated metrics compared to existing methods when applied to a large and imbalanced chest X-ray image dataset of COVID-19. The proposed model achieves 95.5% and 98.5% accuracy for 4-class and 2-class imbalanced classification problems, respectively. The successful experimental outcomes demonstrate the effectiveness of the proposed model in classifying medical images using imbalanced data during pandemics.
Real-time and collision-free motion planning remains challenging for robotic manipulation in unknown environments due to continuous perception updates and the need for frequent online replanning. To address these challenges, we propose a parallel mapping and motion planning framework that tightly integrates Euclidean Distance Transform (EDT)-based environment representation with a sampling-based model predictive control (SMPC) planner. On the mapping side, a dense distance-field-based representation is constructed using a GPU-based EDT and augmented with a robot-masked update mechanism to prevent false self-collision detections during online perception. On the planning side, motion generation is formulated as a stochastic optimization problem with a unified objective function and efficiently solved by evaluating large batches of candidate rollouts in parallel within a SMPC framework, in which a geometrically consistent pose tracking metric defined on SE(3) is incorporated to ensure fast and accurate convergence to the target pose. The entire mapping and planning pipeline is implemented on the GPU to support high-frequency replanning. The effectiveness of the proposed framework is validated through extensive simulations and real-world experiments on a 7-DoF robotic manipulator. More details are available at: https://zxw610.github.io/ParaMaP.
The rapid evolution of generative models has led to a continuous emergence of multimodal safety risks, exposing the limitations of existing defense methods. To address these challenges, we propose ProGuard, a vision-language proactive guard that identifies and describes out-of-distribution (OOD) safety risks without the need for model adjustments required by traditional reactive approaches. We first construct a modality-balanced dataset of 87K samples, each annotated with both binary safety labels and risk categories under a hierarchical multimodal safety taxonomy, effectively mitigating modality bias and ensuring consistent moderation across text, image, and text-image inputs. Based on this dataset, we train our vision-language base model purely through reinforcement learning (RL) to achieve efficient and concise reasoning. To approximate proactive safety scenarios in a controlled setting, we further introduce an OOD safety category inference task and augment the RL objective with a synonym-bank-based similarity reward that encourages the model to generate concise descriptions for unseen unsafe categories. Experimental results show that ProGuard achieves performance comparable to closed-source large models on binary safety classification, substantially outperforms existing open-source guard models on unsafe content categorization. Most notably, ProGuard delivers a strong proactive moderation ability, improving OOD risk detection by 52.6% and OOD risk description by 64.8%.