Abstract:Visual servoing is fundamental to robotic applications, enabling precise positioning and control. However, applying it to textureless objects remains a challenge due to the absence of reliable visual features. Moreover, adverse visual conditions, such as occlusions, often corrupt visual feedback, leading to reduced accuracy and instability in visual servoing. In this work, we build upon learning-based keypoint detection for textureless objects and propose a method that enhances robustness by tightly integrating perception and control in a closed loop. Specifically, we employ an Extended Kalman Filter (EKF) that integrates per-frame keypoint measurements to estimate 6D object pose, which drives pose-based visual servoing (PBVS) for control. The resulting camera motion, in turn, enhances the tracking of subsequent keypoints, effectively closing the perception-control loop. Additionally, unlike standard PBVS, we propose a probabilistic control law that computes both camera velocity and its associated uncertainty, enabling uncertainty-aware control for safe and reliable operation. We validate our approach on real-world robotic platforms using quantitative metrics and grasping experiments, demonstrating that our method outperforms traditional visual servoing techniques in both accuracy and practical application.
Abstract:Estimating the 6D pose of textureless objects from RBG images is an important problem in robotics. Due to appearance ambiguities, rotational symmetries, and severe occlusions, single-view based 6D pose estimators are still unable to handle a wide range of objects, motivating research towards multi-view pose estimation and next-best-view prediction that addresses these limitations. In this work, we propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images. Our approach is built upon a key idea: decoupling the 6D pose estimation into a sequential two-step process can greatly improve both accuracy and efficiency. First, we estimate the 3D translation of each object, resolving scale and depth ambiguities inherent to RGB images. These estimates are then used to simplify the subsequent task of determining the 3D orientation, which we achieve through canonical scale template matching. Building on this formulation, we then introduce an active perception strategy that predicts the next best camera viewpoint to capture an RGB image, effectively reducing object pose uncertainty and enhancing pose accuracy. We evaluate our method on the public ROBI dataset as well as on a transparent object dataset that we created. When evaluated using the same camera viewpoints, our multi-view pose estimation significantly outperforms state-of-the-art approaches. Furthermore, by leveraging our next-best-view strategy, our method achieves high object pose accuracy with substantially fewer viewpoints than heuristic-based policies.