Abstract:Colorectal cancer (CRC) remains a significant cause of cancer-related mortality, despite the widespread implementation of prophylactic initiatives aimed at detecting and removing precancerous polyps. Although screening effectively reduces incidence, a notable portion of patients initially diagnosed with low-grade adenomatous polyps will still develop CRC later in life, even without the presence of known high-risk syndromes. Identifying which low-risk patients are at higher risk of progression is a critical unmet need for tailored surveillance and preventative therapeutic strategies. Traditional histological assessment of adenomas, while fundamental, may not fully capture subtle architectural or cytological features indicative of malignant potential. Advancements in digital pathology and machine learning provide an opportunity to analyze whole-slide images (WSIs) comprehensively and objectively. This study investigates whether machine learning algorithms, specifically convolutional neural networks (CNNs), can detect subtle histological features in WSIs of low-grade tubular adenomas that are predictive of a patient's long-term risk of developing colorectal cancer.
Abstract:Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.