Information extraction is the process of automatically extracting structured information from unstructured text data.
The multimodal nature of music performance has driven increasing interest in data beyond the audio domain within the music information retrieval (MIR) community. This paper introduces PianoVAM, a comprehensive piano performance dataset that includes videos, audio, MIDI, hand landmarks, fingering labels, and rich metadata. The dataset was recorded using a Disklavier piano, capturing audio and MIDI from amateur pianists during their daily practice sessions, alongside synchronized top-view videos in realistic and varied performance conditions. Hand landmarks and fingering labels were extracted using a pretrained hand pose estimation model and a semi-automated fingering annotation algorithm. We discuss the challenges encountered during data collection and the alignment process across different modalities. Additionally, we describe our fingering annotation method based on hand landmarks extracted from videos. Finally, we present benchmarking results for both audio-only and audio-visual piano transcription using the PianoVAM dataset and discuss additional potential applications.
Keeping pace with the rapid growth of academia literature presents a significant challenge for researchers, funding bodies, and academic societies. To address the time-consuming manual effort required for scholarly discovery, we present a novel, fully automated system that transitions from data discovery to direct action. Our pipeline demonstrates how a specialized AI agent, 'Agent-E', can be tasked with identifying papers from specific geographic regions within conference proceedings and then executing a Robotic Process Automation (RPA) to complete a predefined action, such as submitting a nomination form. We validated our system on 586 papers from five different conferences, where it successfully identified every target paper with a recall of 100% and a near perfect accuracy of 99.4%. This demonstration highlights the potential of task-oriented AI agents to not only filter information but also to actively participate in and accelerate the workflows of the academic community.
Audio Language Models (ALM) have emerged as the dominant paradigm for speech and music generation by representing audio as sequences of discrete tokens. Yet, unlike text tokens, which are invertible, audio tokens are extracted from lossy codecs with a limited bitrate. As a consequence, increasing audio quality requires generating more tokens, which imposes a trade-off between fidelity and computational cost. We address this issue by studying Continuous Audio Language Models (CALM). These models instantiate a large Transformer backbone that produces a contextual embedding at every timestep. This sequential information then conditions an MLP that generates the next continuous frame of an audio VAE through consistency modeling. By avoiding lossy compression, CALM achieves higher quality at lower computational cost than their discrete counterpart. Experiments on speech and music demonstrate improved efficiency and fidelity over state-of-the-art discrete audio language models, facilitating lightweight, high-quality audio generation. Samples are available at hf.co/spaces/kyutai/calm-samples




Existing RGB-Event detection methods process the low-information regions of both modalities (background in images and non-event regions in event data) uniformly during feature extraction and fusion, resulting in high computational costs and suboptimal performance. To mitigate the computational redundancy during feature extraction, researchers have respectively proposed token sparsification methods for the image and event modalities. However, these methods employ a fixed number or threshold for token selection, hindering the retention of informative tokens for samples with varying complexity. To achieve a better balance between accuracy and efficiency, we propose FocusMamba, which performs adaptive collaborative sparsification of multimodal features and efficiently integrates complementary information. Specifically, an Event-Guided Multimodal Sparsification (EGMS) strategy is designed to identify and adaptively discard low-information regions within each modality by leveraging scene content changes perceived by the event camera. Based on the sparsification results, a Cross-Modality Focus Fusion (CMFF) module is proposed to effectively capture and integrate complementary features from both modalities. Experiments on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that the proposed method achieves superior performance in both accuracy and efficiency compared to existing methods. The code will be available at https://github.com/Zizzzzzzz/FocusMamba.
Constructing high-definition (HD) maps from sensory input requires accurately mapping the road elements in image space to the Bird's Eye View (BEV) space. The precision of this mapping directly impacts the quality of the final vectorized HD map. Existing HD mapping approaches outsource the projection to standard mapping techniques, such as attention-based ones. However, these methods struggle with accuracy due to generalization problems, often hallucinating non-existent road elements. Our key idea is to start with a geometric mapping based on camera parameters and adapt it to the scene to extract relevant map information from camera images. To implement this, we propose a novel probabilistic projection mechanism with confidence scores to (i) refine the mapping to better align with the scene and (ii) filter out irrelevant elements that should not influence HD map generation. In addition, we improve temporal processing by using confidence scores to selectively accumulate reliable information over time. Experiments on new splits of the nuScenes and Argoverse2 datasets demonstrate improved performance over state-of-the-art approaches, indicating better generalization. The improvements are particularly pronounced on nuScenes and in the challenging long perception range. Our code and model checkpoints are available at https://github.com/Fatih-Erdogan/mapping-like-skeptic .
Audio and music generation systems have been remarkably developed in the music information retrieval (MIR) research field. The advancement of these technologies raises copyright concerns, as ownership and authorship of AI-generated music (AIGM) remain unclear. Also, it can be difficult to determine whether a piece was generated by AI or composed by humans clearly. To address these challenges, we aim to improve the accuracy of AIGM detection by analyzing the structural patterns of music segments. Specifically, to extract musical features from short audio clips, we integrated various pre-trained models, including self-supervised learning (SSL) models or an audio effect encoder, each within our suggested transformer-based framework. Furthermore, for long audio, we developed a segment transformer that divides music into segments and learns inter-segment relationships. We used the FakeMusicCaps and SONICS datasets, achieving high accuracy in both the short-audio and full-audio detection experiments. These findings suggest that integrating segment-level musical features into long-range temporal analysis can effectively enhance both the performance and robustness of AIGM detection systems.




Semantic segmentation of overhead remote sensing imagery enables applications in mapping, urban planning, and disaster response. State-of-the-art segmentation networks are typically developed and tuned on ground-perspective photographs and do not directly address remote sensing challenges such as extreme scale variation, foreground-background imbalance, and large image sizes. We explore the incorporation of the differential morphological profile (DMP), a multi-scale shape extraction method based on grayscale morphology, into modern segmentation networks. Prior studies have shown that the DMP can provide critical shape information to Deep Neural Networks to enable superior detection and classification performance in overhead imagery. In this work, we extend prior DMPNet work beyond classification and object detection by integrating DMP features into three state-of-the-art convolutional and transformer semantic segmentation architectures. We utilize both direct input, which adapts the input stem of feature extraction architectures to accept DMP channels, and hybrid architectures, a dual-stream design that fuses RGB and DMP encoders. Using the iSAID benchmark dataset, we evaluate a variety of DMP differentials and structuring element shapes to more effectively provide shape information to the model. Our results show that while non-DMP models generally outperform the direct-input variants, hybrid DMP consistently outperforms direct-input and is capable of surpassing a non-DMP model on mIoU, F1, and Recall.
This research introduces a novel psychometric method for analyzing textual data using large language models. By leveraging contextual embeddings to create contextual scores, we transform textual data into response data suitable for psychometric analysis. Treating documents as individuals and words as items, this approach provides a natural psychometric interpretation under the assumption that certain keywords, whose contextual meanings vary significantly across documents, can effectively differentiate documents within a corpus. The modeling process comprises two stages: obtaining contextual scores and performing psychometric analysis. In the first stage, we utilize natural language processing techniques and encoder based transformer models to identify common keywords and generate contextual scores. In the second stage, we employ various types of factor analysis, including exploratory and bifactor models, to extract and define latent factors, determine factor correlations, and identify the most significant words associated with each factor. Applied to the Wiki STEM corpus, our experimental results demonstrate the method's potential to uncover latent knowledge dimensions and patterns within textual data. This approach not only enhances the psychometric analysis of textual data but also holds promise for applications in fields rich in textual information, such as education, psychology, and law.




Multimodal relation extraction (MRE) is a crucial task in the fields of Knowledge Graph and Multimedia, playing a pivotal role in multimodal knowledge graph construction. However, existing methods are typically limited to extracting a single type of relational triplet, which restricts their ability to extract triplets beyond the specified types. Directly combining these methods fails to capture dynamic cross-modal interactions and introduces significant computational redundancy. Therefore, we propose a novel \textit{unified multimodal Relation Extraction framework with Multilevel Optimal Transport and mixture-of-Experts}, termed REMOTE, which can simultaneously extract intra-modal and inter-modal relations between textual entities and visual objects. To dynamically select optimal interaction features for different types of relational triplets, we introduce mixture-of-experts mechanism, ensuring the most relevant modality information is utilized. Additionally, considering that the inherent property of multilayer sequential encoding in existing encoders often leads to the loss of low-level information, we adopt a multilevel optimal transport fusion module to preserve low-level features while maintaining multilayer encoding, yielding more expressive representations. Correspondingly, we also create a Unified Multimodal Relation Extraction (UMRE) dataset to evaluate the effectiveness of our framework, encompassing diverse cases where the head and tail entities can originate from either text or image. Extensive experiments show that REMOTE effectively extracts various types of relational triplets and achieves state-of-the-art performanc on almost all metrics across two other public MRE datasets. We release our resources at https://github.com/Nikol-coder/REMOTE.
Driven by autonomous driving's demands for precise 3D perception, 3D semantic occupancy prediction has become a pivotal research topic. Unlike bird's-eye-view (BEV) methods, which restrict scene representation to a 2D plane, occupancy prediction leverages a complete 3D voxel grid to model spatial structures in all dimensions, thereby capturing semantic variations along the vertical axis. However, most existing approaches overlook height-axis information when processing voxel features. And conventional SENet-style channel attention assigns uniform weight across all height layers, limiting their ability to emphasize features at different heights. To address these limitations, we propose SliceSemOcc, a novel vertical slice based multimodal framework for 3D semantic occupancy representation. Specifically, we extract voxel features along the height-axis using both global and local vertical slices. Then, a global local fusion module adaptively reconciles fine-grained spatial details with holistic contextual information. Furthermore, we propose the SEAttention3D module, which preserves height-wise resolution through average pooling and assigns dynamic channel attention weights to each height layer. Extensive experiments on nuScenes-SurroundOcc and nuScenes-OpenOccupancy datasets verify that our method significantly enhances mean IoU, achieving especially pronounced gains on most small-object categories. Detailed ablation studies further validate the effectiveness of the proposed SliceSemOcc framework.