Information extraction is the process of automatically extracting structured information from unstructured text data.
Skill extraction is a critical component of modern recruitment systems, enabling efficient job matching, personalized recommendations, and labor market analysis. Despite Türkiye's significant role in the global workforce, Turkish, a morphologically complex language, lacks both a skill taxonomy and a dedicated skill extraction dataset, resulting in underexplored research in skill extraction for Turkish. This article seeks the answers to three research questions: 1) How can skill extraction be effectively performed for this language, in light of its low resource nature? 2)~What is the most promising model? 3) What is the impact of different Large Language Models (LLMs) and prompting strategies on skill extraction (i.e., dynamic vs. static few-shot samples, varying context information, and encouraging causal reasoning)? The article introduces the first Turkish skill extraction dataset and performance evaluations of automated skill extraction using LLMs. The manually annotated dataset contains 4,819 labeled skill spans from 327 job postings across different occupation areas. The use of LLM outperforms supervised sequence labeling when used in an end-to-end pipeline, aligning extracted spans with standardized skills in the ESCO taxonomy more effectively. The best-performing configuration, utilizing Claude Sonnet 3.7 with dynamic few-shot prompting for skill identification, embedding-based retrieval, and LLM-based reranking for skill linking, achieves an end-to-end performance of 0.56, positioning Turkish alongside similar studies in other languages, which are few in the literature. Our findings suggest that LLMs can improve skill extraction performance in low-resource settings, and we hope that our work will accelerate similar research on skill extraction for underrepresented languages.
Latent Action Models (LAMs) learn to extract action-relevant representations solely from raw observations, enabling reinforcement learning from unlabelled videos and significantly scaling available training data. However, LAMs face a critical challenge in disentangling action-relevant features from action-correlated noise (e.g., background motion). Failing to filter these distractors causes LAMs to capture spurious correlations and build sub-optimal latent action spaces. In this paper, we introduce MaskLAM -- a lightweight modification to LAM training to mitigate this issue by incorporating visual agent segmentation. MaskLAM utilises segmentation masks from pretrained foundation models to weight the LAM reconstruction loss, thereby prioritising salient information over background elements while requiring no architectural modifications. We demonstrate the effectiveness of our method on continuous-control MuJoCo tasks, modified with action-correlated background noise. Our approach yields up to a 4x increase in accrued rewards compared to standard baselines and a 3x improvement in the latent action quality, as evidenced by linear probe evaluation.
In marine towed-streamer seismic acquisition, the nearest hydrophone is often two hundred meter away from the source resulting in missing near-offset traces, which degrades critical processing workflows such as surface-related multiple elimination, velocity analysis, and full-waveform inversion. Existing reconstruction methods, like transform-domain interpolation, often produce kinematic inconsistencies and amplitude distortions, while supervised deep learning approaches require complete ground-truth near-offset data that are unavailable in realistic acquisition scenarios. To address these limitations, we propose a self-supervised diffusion-based framework that reconstructs missing near-offset traces without requiring near-offset reference data. Our method leverages overlapping patch extraction with single-trace shifts from the available far-offset section to train a conditional diffusion model, which learns offset-dependent statistical patterns governing event curvature, amplitude variation, and wavelet characteristics. At inference, we perform trace-by-trace recursive extrapolation from the nearest recorded offset toward zero offset, progressively propagating learned prior information from far to near offsets. The generative formulation further provides uncertainty estimates via ensemble sampling, quantifying prediction confidence where validation data are absent. Controlled validation experiments on synthetic and field datasets show substantial performance gains over conventional parabolic Radon transform baselines. Operational deployment on actual near-offset gaps demonstrates practical viability where ground-truth validation is impossible. Notably, the reconstructed waveforms preserve realistic amplitude-versus-offset trends despite training exclusively on far-offset observations, and uncertainty maps accurately identify challenging extrapolation regions.
Municipal meeting minutes are official documents of local governance, exhibiting heterogeneous formats and writing styles. Effective information retrieval (IR) requires identifying metadata such as meeting number, date, location, participants, and start/end times, elements that are rarely standardized or easy to extract automatically. Existing named entity recognition (NER) models are ill-suited to this task, as they are not adapted to such domain-specific categories. In this paper, we propose a two-stage pipeline for metadata extraction from municipal minutes. First, a question answering (QA) model identifies the opening and closing text segments containing metadata. Transformer-based models (BERTimbau and XLM-RoBERTa with and without a CRF layer) are then applied for fine-grained entity extraction and enhanced through deslexicalization. To evaluate our proposed pipeline, we benchmark both open-weight (Phi) and closed-weight (Gemini) LLMs, assessing predictive performance, inference cost, and carbon footprint. Our results demonstrate strong in-domain performance, better than larger general-purpose LLMs. However, cross-municipality evaluation reveals reduced generalization reflecting the variability and linguistic complexity of municipal records. This work establishes the first benchmark for metadata extraction from municipal meeting minutes, providing a solid foundation for future research in this domain.
Foundation models have transformed language, vision, and time series data analysis, yet progress on dynamic predictions for physical systems remains limited. Given the complexity of physical constraints, two challenges stand out. $(i)$ Physics-computation scalability: physics-informed learning can enforce physical regularization, but its computation (e.g., ODE integration) does not scale to extensive systems. $(ii)$ Knowledge-sharing efficiency: the attention mechanism is primarily computed within each system, which limits the extraction of shared ODE structures across systems. We show that enforcing ODE consistency does not require expensive nonlinear integration: a token-wise locally linear ODE representation preserves physical fidelity while scaling to foundation-model regimes. Thus, we propose novel token representations that respect locally linear ODE evolution. Such linearity substantially accelerates integration while accurately approximating the local data manifold. Second, we introduce a simple yet effective inter-system attention that augments attention with a common structure hub (CSH) that stores shared tokens and aggregates knowledge across systems. The resulting model, termed LASS-ODE (\underline{LA}rge-\underline{S}cale \underline{S}mall \underline{ODE}), is pretrained on our $40$GB ODE trajectory collections to enable strong in-domain performance, zero-shot generalization across diverse ODE systems, and additional improvements through fine-tuning.
Irregular multivariate time series forecasting (IMTSF) is challenging due to non-uniform sampling and variable asynchronicity. These irregularities violate the equidistant assumptions of standard models, hindering local temporal modeling and rendering classical frequency-domain methods ineffective for capturing global periodic structures. To address this challenge, we propose TFMixer, a joint time-frequency modeling framework for IMTS forecasting. Specifically, TFMixer incorporates a Global Frequency Module that employs a learnable Non-Uniform Discrete Fourier Transform (NUDFT) to directly extract spectral representations from irregular timestamps. In parallel, the Local Time Module introduces a query-based patch mixing mechanism to adaptively aggregate informative temporal patches and alleviate information density imbalance. Finally, TFMixer fuses the time-domain and frequency-domain representations to generate forecasts and further leverages inverse NUDFT for explicit seasonal extrapolation. Extensive experiments on real-world datasets demonstrate the state--of-the-art performance of TFMixer.
Multi-graph learning is crucial for extracting meaningful signals from collections of heterogeneous graphs. However, effectively integrating information across graphs with differing topologies, scales, and semantics, often in the absence of shared node identities, remains a significant challenge. We present the Multi-Graph Meta-Transformer (MGMT), a unified, scalable, and interpretable framework for cross-graph learning. MGMT first applies Graph Transformer encoders to each graph, mapping structure and attributes into a shared latent space. It then selects task-relevant supernodes via attention and builds a meta-graph that connects functionally aligned supernodes across graphs using similarity in the latent space. Additional Graph Transformer layers on this meta-graph enable joint reasoning over intra- and inter-graph structure. The meta-graph provides built-in interpretability: supernodes and superedges highlight influential substructures and cross-graph alignments. Evaluating MGMT on both synthetic datasets and real-world neuroscience applications, we show that MGMT consistently outperforms existing state-of-the-art models in graph-level prediction tasks while offering interpretable representations that facilitate scientific discoveries. Our work establishes MGMT as a unified framework for structured multi-graph learning, advancing representation techniques in domains where graph-based data plays a central role.
Existing generative models for unsupervised anomalous sound detection are limited by their inability to fully capture the complex feature distribution of normal sounds, while the potential of powerful diffusion models in this domain remains largely unexplored. To address this challenge, we propose a novel framework, TLDiffGAN, which consists of two complementary branches. One branch incorporates a latent diffusion model into the GAN generator for adversarial training, thereby making the discriminator's task more challenging and improving the quality of generated samples. The other branch leverages pretrained audio model encoders to extract features directly from raw audio waveforms for auxiliary discrimination. This framework effectively captures feature representations of normal sounds from both raw audio and Mel spectrograms. Moreover, we introduce a TMixup spectrogram augmentation technique to enhance sensitivity to subtle and localized temporal patterns that are often overlooked. Extensive experiments on the DCASE 2020 Challenge Task 2 dataset demonstrate the superior detection performance of TLDiffGAN, as well as its strong capability in anomalous time-frequency localization.
Acquiring channel state information (CSI) through traditional methods, such as channel estimation, is increasingly challenging for the emerging sixth generation (6G) mobile networks due to high overhead. To address this issue, channel extrapolation techniques have been proposed to acquire complete CSI from a limited number of known CSIs. To improve extrapolation accuracy, environmental information, such as visual images or radar data, has been utilized, which poses challenges including additional hardware, privacy and multi-modal alignment concerns. To this end, this paper proposes a novel channel extrapolation framework by leveraging environment-related multi-path characteristics induced directly from CSI without integrating additional modalities. Specifically, we propose utilizing the multi-path characteristics in the form of power-delay profile (PDP), which is acquired using a CSI-to-PDP module. CSI-to-PDP module is trained in an AE-based framework by reconstructing the PDPs and constraining the latent low-dimensional features to represent the CSI. We further extract the total power & power-weighted delay of all the identified paths in PDP as the multi-path information. Building on this, we proposed a MAE architecture trained in a self-supervised manner to perform channel extrapolation. Unlike standard MAE approaches, our method employs separate encoders to extract features from the masked CSI and the multi-path information, which are then fused by a cross-attention module. Extensive simulations demonstrate that this framework improves extrapolation performance dramatically, with a minor increase in inference time (around 0.1 ms). Furthermore, our model shows strong generalization capabilities, particularly when only a small portion of the CSI is known, outperforming existing benchmarks.
While Chain-of-Thought (CoT) significantly enhances the performance of Large Language Models (LLMs), explicit reasoning chains introduce substantial computational redundancy. Recent latent reasoning methods attempt to mitigate this by compressing reasoning processes into latent space, but often suffer from severe performance degradation due to the lack of appropriate compression guidance. In this study, we propose Rendered CoT-Guided variational Latent Reasoning (ReGuLaR), a simple yet novel latent learning paradigm resolving this issue. Fundamentally, we formulate latent reasoning within the Variational Auto-Encoding (VAE) framework, sampling the current latent reasoning state from the posterior distribution conditioned on previous ones. Specifically, when learning this variational latent reasoning model, we render explicit reasoning chains as images, from which we extract dense visual-semantic representations to regularize the posterior distribution, thereby achieving efficient compression with minimal information loss. Extensive experiments demonstrate that ReGuLaR significantly outperforms existing latent reasoning methods across both computational efficiency and reasoning effectiveness, and even surpasses CoT through multi-modal reasoning, providing a new and insightful solution to latent reasoning. Code: https://github.com/FanmengWang/ReGuLaR.