Information extraction is the process of automatically extracting structured information from unstructured text data.
Graph-structured data is foundational to numerous web applications, and watermarking is crucial for protecting their intellectual property and ensuring data provenance. Existing watermarking methods primarily operate on graph structures or entangled graph representations, which compromise the transparency and robustness of watermarks due to the information coupling in representing graphs and uncontrollable discretization in transforming continuous numerical representations into graph structures. This motivates us to propose DRGW, the first graph watermarking framework that addresses these issues through disentangled representation learning. Specifically, we design an adversarially trained encoder that learns an invariant structural representation against diverse perturbations and derives a statistically independent watermark carrier, ensuring both robustness and transparency of watermarks. Meanwhile, we devise a graph-aware invertible neural network to provide a lossless channel for watermark embedding and extraction, guaranteeing high detectability and transparency of watermarks. Additionally, we develop a structure-aware editor that resolves the issue of latent modifications into discrete graph edits, ensuring robustness against structural perturbations. Experiments on diverse benchmark datasets demonstrate the superior effectiveness of DRGW.
With the rise of generative AI technology, anyone can now easily create and deploy AI-generated music, which has heightened the need for technical solutions to address copyright and ownership issues. While existing works mainly focused on short-audio, the challenge of full-audio detection, which requires modeling long-term structure and context, remains insufficiently explored. To address this, we propose an improved version of the Segment Transformer, termed the Fusion Segment Transformer. As in our previous work, we extract content embeddings from short music segments using diverse feature extractors. Furthermore, we enhance the architecture for full-audio AI-generated music detection by introducing a Gated Fusion Layer that effectively integrates content and structural information, enabling the capture of long-term context. Experiments on the SONICS and AIME datasets show that our approach outperforms the previous model and recent baselines, achieving state-of-the-art results in AI-generated music detection.
Current remote sensing change detection (CD) methods mainly rely on specialized models, which limits the scalability toward modality-adaptive Earth observation. For homogeneous CD, precise boundary delineation relies on fine-grained spatial cues and local pixel interactions, whereas heterogeneous CD instead requires broader contextual information to suppress speckle noise and geometric distortions. Moreover, difference operator (e.g., subtraction) works well for aligned homogeneous images but introduces artifacts in cross-modal or geometrically misaligned scenarios. Across different modality settings, specialized models based on static backbones or fixed difference operations often prove insufficient. To address this challenge, we propose UniRoute, a unified framework for modality-adaptive learning by reformulating feature extraction and fusion as conditional routing problems. We introduce an Adaptive Receptive Field Routing MoE (AR2-MoE) module to disentangle local spatial details from global semantic context, and a Modality-Aware Difference Routing MoE (MDR-MoE) module to adaptively select the most suitable fusion primitive at each pixel. In addition, we propose a Consistency-Aware Self-Distillation (CASD) strategy that stabilizes unified training under data-scarce heterogeneous settings by enforcing multi-level consistency. Extensive experiments on five public datasets demonstrate that UniRoute achieves strong overall performance, with a favorable accuracy-efficiency trade-off under a unified deployment setting.
The automated extraction of structured questions from paper-based mathematics exams is fundamental to intelligent education, yet remains challenging in real-world settings due to severe visual noise. Existing benchmarks mainly focus on clean documents or generic layout analysis, overlooking both the structural integrity of mathematical problems and the ability of models to actively reject incomplete inputs. We introduce MathDoc, the first benchmark for document-level information extraction from authentic high school mathematics exam papers. MathDoc contains \textbf{3,609} carefully curated questions with real-world artifacts and explicitly includes unrecognizable samples to evaluate active refusal behavior. We propose a multi-dimensional evaluation framework covering stem accuracy, visual similarity, and refusal capability. Experiments on SOTA MLLMs, including Qwen3-VL and Gemini-2.5-Pro, show that although end-to-end models achieve strong extraction performance, they consistently fail to refuse illegible inputs, instead producing confident but invalid outputs. These results highlight a critical gap in current MLLMs and establish MathDoc as a benchmark for assessing model reliability under degraded document conditions. Our project repository is available at \href{https://github.com/winnk123/papers/tree/master}{GitHub repository}
This study investigates the feature representations produced by publicly available open source medical vision-language models (VLMs). While medical VLMs are expected to capture diagnostically relevant features, their learned representations remain underexplored, and standard evaluations like classification accuracy do not fully reveal if they acquire truly discriminative, lesion-specific features. Understanding these representations is crucial for revealing medical image structures and improving downstream tasks in medical image analysis. This study aims to investigate the feature distributions learned by medical VLMs and evaluate the impact of medical specialization. We analyze the feature distribution of multiple image modalities extracted by some representative medical VLMs across lesion classification datasets on multiple modalities. These distributions were compared them with non-medical VLMs to assess the domain-specific medical training. Our experiments showed that medical VLMs can extract discriminative features that are effective for medical classification tasks. Moreover, it was found that non-medical VLMs with recent improvement with contextual enrichment such as LLM2CLIP produce more refined feature representations. Our results imply that enhancing text encoder is more crucial than training intensively on medical images when developing medical VLMs. Notably, non-medical models are particularly vulnerable to biases introduced by overlaied text strings on images. These findings underscore the need for careful consideration on model selection according to downstream tasks besides potential risks in inference due to background biases such as textual information in images.
Effective and controllable data selection is critical for LLM instruction tuning, especially with massive open-source datasets. Existing approaches primarily rely on instance-level quality scores, or diversity metrics based on embedding clusters or semantic tags. However, constrained by the flatness of embedding spaces or the coarseness of tags, these approaches overlook fine-grained knowledge and its intrinsic hierarchical dependencies, consequently hindering precise data valuation and knowledge-aligned sampling. To address this challenge, we propose Tree-aware Aligned Global Sampling (TAGS), a unified framework that leverages a knowledge tree built from fine-grained tags, thereby enabling joint control of global quality, diversity, and target alignment. Using an LLM-based tagger, we extract atomic knowledge concepts, which are organized into a global tree through bottom-up hierarchical clustering. By grounding data instances onto this tree, a tree-aware metric then quantifies data quality and diversity, facilitating effective sampling. Our controllable sampling strategy maximizes tree-level information gain and enforces leaf-level alignment via KL-divergence for specific domains. Extensive experiments demonstrate that TAGS significantly outperforms state-of-the-art baselines. Notably, it surpasses the full-dataset model by \textbf{+5.84\%} using only \textbf{5\%} of the data, while our aligned sampling strategy further boosts average performance by \textbf{+4.24\%}.
Distributed multichannel acoustic sensing (DMAS) enables large-scale sound event classification (SEC), but performance drops when many channels are degraded and when sensor layouts at test time differ from training layouts. We propose a learning-free, physics-informed inpainting frontend based on reverse time migration (RTM). In this approach, observed multichannel spectrograms are first back-propagated on a 3D grid using an analytic Green's function to form a scene-consistent image, and then forward-projected to reconstruct inpainted signals before log-mel feature extraction and Transformer-based classification. We evaluate the method on ESC-50 with 50 sensors and three layouts (circular, linear, right-angle), where per-channel SNRs are sampled from -30 to 0 dB. Compared with an AST baseline, scaling-sparsemax channel selection, and channel-swap augmentation, the proposed RTM frontend achieves the best or competitive accuracy across all layouts, improving accuracy by 13.1 points on the right-angle layout (from 9.7% to 22.8%). Correlation analyses show that spatial weights align more strongly with SNR than with channel--source distance, and that higher SNR--weight correlation corresponds to higher SEC accuracy. These results demonstrate that a reconstruct-then-project, physics-based preprocessing effectively complements learning-only methods for DMAS under layout-open configurations and severe channel degradation.
Large language models (LLMs) exhibit impressive in-context learning (ICL) capabilities, yet the quality of their predictions is fundamentally limited by the few costly labeled demonstrations that can fit into a prompt. Meanwhile, there exist vast and continuously growing amounts of unlabeled data that may be closely related to the ICL task. How to utilize such unlabeled data to provably enhance the performance of ICL thus becomes an emerging fundamental question. In this work, we propose a novel augmented ICL framework, in which the prompt includes a small set of labeled examples alongside a block of unlabeled inputs. We focus on the multi-class linear classification setting and demonstrate that, with chain-of-thought (CoT) prompting, a multi-layer transformer can effectively emulate an expectation-maximization (EM) algorithm. This enables the transformer to implicitly extract useful information from both labeled and unlabeled data, leading to provable improvements in ICL accuracy. Moreover, we show that such a transformer can be trained via teacher forcing, with its parameters converging to the desired solution at a linear rate. Experiments demonstrate that the augmented ICL framework consistently outperforms conventional few-shot ICL, providing empirical support for our theoretical findings. To the best of our knowledge, this is the first theoretical study on the impact of unlabeled data on the ICL performance of transformers.
Graph-based methods have proven to be effective in capturing relationships among points for 3D point cloud analysis. However, these methods often suffer from suboptimal graph structures, particularly due to sparse connections at boundary points and noisy connections in junction areas. To address these challenges, we propose a novel method that integrates a graph smoothing module with an enhanced local geometry learning module. Specifically, we identify the limitations of conventional graph structures, particularly in handling boundary points and junction areas. In response, we introduce a graph smoothing module designed to optimize the graph structure and minimize the negative impact of unreliable sparse and noisy connections. Based on the optimized graph structure, we improve the feature extract function with local geometry information. These include shape features derived from adaptive geometric descriptors based on eigenvectors and distribution features obtained through cylindrical coordinate transformation. Experimental results on real-world datasets validate the effectiveness of our method in various point cloud learning tasks, i.e., classification, part segmentation, and semantic segmentation.
Glioblastoma, IDH-wildtype (GBM-IDHwt) is the most common malignant brain tumor. Histomorphology is a crucial component of the integrated diagnosis of GBM-IDHwt. Artificial intelligence (AI) methods have shown promise to extract additional prognostic information from histological whole-slide images (WSI) of hematoxylin and eosin-stained glioblastoma tissue. Here, we present an explainable AI-based method to support systematic interpretation of histomorphological features associated with survival. It combines an explainable multiple instance learning (MIL) architecture with a sparse autoencoder (SAE) to relate human-interpretable visual patterns of tissue to survival. The MIL architecture directly identifies prognosis-relevant image tiles and the SAE maps these tiles post-hoc to visual patterns. The MIL method was trained and evaluated using a new real-world dataset that comprised 720 GBM-IDHwt cases from three hospitals and four cancer registries in Germany. The SAE was trained using 1878 WSIs of glioblastoma from five independent public data collections. Despite the many factors influencing survival time, our method showed some ability to discriminate between patients living less than 180 days or more than 360 days solely based on histomorphology (AUC: 0.67; 95% CI: 0.63-0.72). Cox proportional hazards regression confirmed a significant difference in survival time between the predicted groups after adjustment for established prognostic factors (hazard ratio: 1.47; 95% CI: 1.26-1.72). Our method identified multiple interpretable visual patterns associated with survival. Three neuropathologists separately found that 21 of the 24 most strongly associated patterns could be clearly attributed to seven histomorphological categories. Necrosis and hemorrhage appeared to be associated with shorter survival while highly cellular tumor areas were associated with longer survival.