Information extraction is the process of automatically extracting structured information from unstructured text data.
Retrieval-Augmented Generation (RAG) has proven effective for knowledge synthesis, yet it encounters significant challenges in practical scenarios where data is inherently discrete and fragmented. In most environments, information is distributed across isolated files like reports and logs that lack explicit links. Standard search engines process files independently, ignoring the connections between them. Furthermore, manually building Knowledge Graphs is impractical for such vast data. To bridge this gap, we present Orion-RAG. Our core insight is simple yet effective: we do not need heavy algorithms to organize this data. Instead, we use a low-complexity strategy to extract lightweight paths that naturally link related concepts. We demonstrate that this streamlined approach suffices to transform fragmented documents into semi-structured data, enabling the system to link information across different files effectively. Extensive experiments demonstrate that Orion-RAG consistently outperforms mainstream frameworks across diverse domains, supporting real-time updates and explicit Human-in-the-Loop verification with high cost-efficiency. Experiments on FinanceBench demonstrate superior precision with a 25.2% relative improvement over strong baselines.
The Automatic Identification System provides critical information for maritime navigation and safety, yet its trajectories are often incomplete due to signal loss or deliberate tampering. Existing imputation methods emphasize trajectory recovery, paying limited attention to interpretability and failing to provide underlying knowledge that benefits downstream tasks such as anomaly detection and route planning. We propose knowledge-driven interpretable vessel trajectory imputation (VISTA), the first trajectory imputation framework that offers interpretability while simultaneously providing underlying knowledge to support downstream analysis. Specifically, we first define underlying knowledge as a combination of Structured Data-derived Knowledge (SDK) distilled from AIS data and Implicit LLM Knowledge acquired from large-scale Internet corpora. Second, to manage and leverage the SDK effectively at scale, we develop a data-knowledge-data loop that employs a Structured Data-derived Knowledge Graph for SDK extraction and knowledge-driven trajectory imputation. Third, to efficiently process large-scale AIS data, we introduce a workflow management layer that coordinates the end-to-end pipeline, enabling parallel knowledge extraction and trajectory imputation with anomaly handling and redundancy elimination. Experiments on two large AIS datasets show that VISTA is capable of state-of-the-art imputation accuracy and computational efficiency, improving over state-of-the-art baselines by 5%-94% and reducing time cost by 51%-93%, while producing interpretable knowledge cues that benefit downstream tasks. The source code and implementation details of VISTA are publicly available.
Stock market price prediction is a significant interdisciplinary research domain that depends at the intersection of finance, statistics, and economics. Forecasting Accurately predicting stock prices has always been a focal point for various researchers. However, existing statistical approaches for time-series prediction often fail to effectively forecast the probability range of future stock prices. Hence, to solve this problem, the Neural Prophet with a Deep Neural Network (NP-DNN) is proposed to predict stock market prices. The preprocessing technique used in this research is Z-score normalization, which normalizes stock price data by removing scale differences, making patterns easier to detect. Missing value imputation fills gaps in historical data, enhancing the models use of complete information for more accurate predictions. The Multi-Layer Perceptron (MLP) learns complex nonlinear relationships among stock market prices and extracts hidden patterns from the input data, thereby creating meaningful feature representations for better prediction accuracy. The proposed NP-DNN model achieved an accuracy of 99.21% compared with other approaches using the Fused Large Language Model. Keywords: deep neural network, forecasting stock prices, multi-layer perceptron, neural prophet, stock market price prediction.
Recent deepfake detection methods have increasingly explored frequency domain representations to reveal manipulation artifacts that are difficult to detect in the spatial domain. However, most existing approaches rely primarily on spectral magnitude, implicitly under exploring the role of phase information. In this work, we propose Phase4DFD, a phase aware frequency domain deepfake detection framework that explicitly models phase magnitude interactions via a learnable attention mechanism. Our approach augments standard RGB input with Fast Fourier Transform (FFT) magnitude and local binary pattern (LBP) representations to expose subtle synthesis artifacts that remain indistinguishable under spatial analysis alone. Crucially, we introduce an input level phase aware attention module that uses phase discontinuities commonly introduced by synthetic generation to guide the model toward frequency patterns that are most indicative of manipulation before backbone feature extraction. The attended multi domain representation is processed by an efficient BNext M backbone, with optional channel spatial attention applied for semantic feature refinement. Extensive experiments on the CIFAKE and DFFD datasets demonstrate that our proposed model Phase4DFD outperforms state of the art spatial and frequency-based detectors while maintaining low computational overhead. Comprehensive ablation studies further confirm that explicit phase modeling provides complementary and non-redundant information beyond magnitude-only frequency representations.
Privacy-preserving Transformer inference has gained attention due to the potential leakage of private information. Despite recent progress, existing frameworks still fall short of practical model scales, with gaps up to a hundredfold. A possible way to close this gap is the Mixture of Experts (MoE) architecture, which has emerged as a promising technique to scale up model capacity with minimal overhead. However, given that the current secure two-party (2-PC) protocols allow the server to homomorphically compute the FFN layer with its plaintext model weight, under the MoE setting, this could reveal which expert is activated to the server, exposing token-level privacy about the client's input. While naively evaluating all the experts before selection could protect privacy, it nullifies MoE sparsity and incurs the heavy computational overhead that sparse MoE seeks to avoid. To address the privacy and efficiency limitations above, we propose a 2-PC privacy-preserving inference framework, \SecMoE. Unifying per-entry circuits in both the MoE layer and piecewise polynomial functions, \SecMoE obliviously selects the extracted parameters from circuits and only computes one encrypted entry, which we refer to as Select-Then-Compute. This makes the model for private inference scale to 63$\times$ larger while only having a 15.2$\times$ increase in end-to-end runtime. Extensive experiments show that, under 5 expert settings, \SecMoE lowers the end-to-end private inference communication by 1.8$\sim$7.1$\times$ and achieves 1.3$\sim$3.8$\times$ speedup compared to the state-of-the-art (SOTA) protocols.
Vision Language Models (VLMs) are poised to revolutionize the digital transformation of pharmacyceutical industry by enabling intelligent, scalable, and automated multi-modality content processing. Traditional manual annotation of heterogeneous data modalities (text, images, video, audio, and web links), is prone to inconsistencies, quality degradation, and inefficiencies in content utilization. The sheer volume of long video and audio data further exacerbates these challenges, (e.g. long clinical trial interviews and educational seminars). Here, we introduce a domain adapted Video to Video Clip Generation framework that integrates Audio Language Models (ALMs) and Vision Language Models (VLMs) to produce highlight clips. Our contributions are threefold: (i) a reproducible Cut & Merge algorithm with fade in/out and timestamp normalization, ensuring smooth transitions and audio/visual alignment; (ii) a personalization mechanism based on role definition and prompt injection for tailored outputs (marketing, training, regulatory); (iii) a cost efficient e2e pipeline strategy balancing ALM/VLM enhanced processing. Evaluations on Video MME benchmark (900) and our proprietary dataset of 16,159 pharmacy videos across 14 disease areas demonstrate 3 to 4 times speedup, 4 times cost reduction, and competitive clip quality. Beyond efficiency gains, we also report our methods improved clip coherence scores (0.348) and informativeness scores (0.721) over state of the art VLM baselines (e.g., Gemini 2.5 Pro), highlighting the potential of transparent, custom extractive, and compliance supporting video summarization for life sciences.
Understanding real-world videos such as movies requires integrating visual and dialogue cues to answer complex questions. Yet existing VideoQA benchmarks struggle to capture this multimodal reasoning and are largely not open-ended, given the difficulty of evaluating free-form answers. In this paper, we introduce a novel open-ended multi-modal VideoQA benchmark, MovieRecapsQA created using movie recap videos--a distinctive type of YouTube content that summarizes a film by presenting its key events through synchronized visual (recap video) and textual (recap summary) modalities. Using the recap summary, we generate $\approx 8.2$ K question-answer (QA) pairs (aligned with movie-subtitles) and provide the necessary "facts" needed to verify an answer in a reference-free manner. To our knowledge, this is the first open-ended VideoQA benchmark that supplies explicit textual context of the input (video and/or text); which we use for evaluation. Our benchmark provides videos of multiple lengths (i.e., recap-segments, movie-segments) and categorizations of questions (by modality and type) to enable fine-grained analysis. We evaluate the performance of seven state-of-the-art MLLMs using our benchmark and observe that: 1) visual-only questions remain the most challenging; 2) models default to textual inputs whenever available; 3) extracting factually accurate information from video content is still difficult for all models; and 4) proprietary and open-source models perform comparably on video-dependent questions.
Large language models (LLMs) increasingly support very long input contexts. Yet it remains unclear how reliably they extract and infer information at scale. Performance varies with context length and strongly interacts with how information is distributed in real-world corpora. Motivated by these observations, we study how fact placement, corpus-level fact distributions, and Don't Make It Up prompts influence model behavior. We introduce an extended needle-in-a-haystack benchmark across four production-scale models: Gemini-2.5-flash, ChatGPT-5-mini, Claude-4.5-haiku, and Deepseek-v3.2-chat. Unlike prior work, we separately evaluate literal extraction, logical inference, and hallucination risk. Our study considers both positional effects and realistic distributions of evidence across long contexts, as well as prompts that explicitly discourage fabrication. We find that longer contexts alone do not guarantee better performance and can be detrimental when relevant evidence is diluted or widely dispersed. Performance varies substantially across models: some show severe degradation under realistic conditions, while others remain more robust at longer context lengths. Anti-hallucination (AH) instructions can make some models overly conservative, sharply reducing accuracy in literal extraction and logical inference. While we do not directly compare retrieval-augmented generation (RAG) and cache-augmented generation (CAG), our results suggest many failures stem from ineffective context utilization. Models often struggle to identify and prioritize relevant information even when it is present. These findings have direct practical implications, as enterprise workflows increasingly involve pasting large volumes of unfiltered documents into LLM prompts. Effective context length and model-specific robustness to long contexts are therefore critical for reliable LLM deployment in research and business.
Long-term memory is a critical capability for multimodal large language model (MLLM) agents, particularly in conversational settings where information accumulates and evolves over time. However, existing benchmarks either evaluate multi-session memory in text-only conversations or assess multimodal understanding within localized contexts, failing to evaluate how multimodal memory is preserved, organized, and evolved across long-term conversational trajectories. Thus, we introduce Mem-Gallery, a new benchmark for evaluating multimodal long-term conversational memory in MLLM agents. Mem-Gallery features high-quality multi-session conversations grounded in both visual and textual information, with long interaction horizons and rich multimodal dependencies. Building on this dataset, we propose a systematic evaluation framework that assesses key memory capabilities along three functional dimensions: memory extraction and test-time adaptation, memory reasoning, and memory knowledge management. Extensive benchmarking across thirteen memory systems reveals several key findings, highlighting the necessity of explicit multimodal information retention and memory organization, the persistent limitations in memory reasoning and knowledge management, as well as the efficiency bottleneck of current models.
Physics simulation of slender elastic objects often requires discretization as a polyline. However, constructing a polyline from Gaussian splatting is challenging as Gaussian splatting lacks connectivity information and the configuration of Gaussian primitives contains much noise. This paper presents a method to extract a polyline representation of the slender part of the objects in a Gaussian splatting scene from the user's sketching input. Our method robustly constructs a polyline mesh that represents the slender parts using the screen-space shortest path analysis that can be efficiently solved using dynamic programming. We demonstrate the effectiveness of our approach in several in-the-wild examples.