Information extraction is the process of automatically extracting structured information from unstructured text data.
For bone segmentation, the classical geodesic active contour model is usually limited by its indiscriminate feature extraction, and then struggles to handle the phenomena of edge obstruction, edge leakage and bone fracture. Thus, we propose a fracture interactive geodesic active contour algorithm tailored for bone segmentation, which can better capture bone features and perform robustly to the presence of bone fractures and soft tissues. Inspired by orthopedic knowledge, we construct a novel edge-detector function that combines the intensity and gradient norm, which guides the contour towards bone edges without being obstructed by other soft tissues and therefore reduces mis-segmentation. Furthermore, distance information, where fracture prompts can be embedded, is introduced into the contour evolution as an adaptive step size to stabilize the evolution and help the contour stop at bone edges and fractures. This embedding provides a way to interact with bone fractures and improves the accuracy in the fracture regions. Experiments in pelvic and ankle segmentation demonstrate the effectiveness on addressing the aforementioned problems and show an accurate, stable and consistent performance, indicating a broader application in other bone anatomies. Our algorithm also provides insights into combining the domain knowledge and deep neural networks.
Based on Synesthesia of Machines (SoM), a large language model (LLM) is adapted for multipath generation (LLM4MG) for the first time. Considering a typical sixth-generation (6G) vehicle-to-infrastructure (V2I) scenario, a new multi-modal sensing-communication dataset is constructed, named SynthSoM-V2I, including channel multipath information, millimeter wave (mmWave) radar sensory data, RGB-D images, and light detection and ranging (LiDAR) point clouds. Based on the SynthSoM-V2I dataset, the proposed LLM4MG leverages Large Language Model Meta AI (LLaMA) 3.2 for multipath generation via multi-modal sensory data. The proposed LLM4MG aligns the multi-modal feature space with the LLaMA semantic space through feature extraction and fusion networks. To further achieve general knowledge transfer from the pre-trained LLaMA for multipath generation via multi-modal sensory data, the low-rank adaptation (LoRA) parameter-efficient fine-tuning and propagation-aware prompt engineering are exploited. Simulation results demonstrate that the proposed LLM4MG outperforms conventional deep learning-based methods in terms of line-of-sight (LoS)/non-LoS (NLoS) classification with accuracy of 92.76%, multipath power/delay generation precision with normalized mean square error (NMSE) of 0.099/0.032, and cross-vehicular traffic density (VTD), cross-band, and cross-scenario generalization. The utility of the proposed LLM4MG is validated by real-world generalization. The necessity of high-precision multipath generation for system design is also demonstrated by channel capacity comparison.
Large reasoning models (LRMs) have exhibited strong performance on complex reasoning tasks, with further gains achievable through increased computational budgets at inference. However, current test-time scaling methods predominantly rely on redundant sampling, ignoring the historical experience utilization, thereby limiting computational efficiency. To overcome this limitation, we propose Sticker-TTS, a novel test-time scaling framework that coordinates three collaborative LRMs to iteratively explore and refine solutions guided by historical attempts. At the core of our framework are distilled key conditions-termed stickers-which drive the extraction, refinement, and reuse of critical information across multiple rounds of reasoning. To further enhance the efficiency and performance of our framework, we introduce a two-stage optimization strategy that combines imitation learning with self-improvement, enabling progressive refinement. Extensive evaluations on three challenging mathematical reasoning benchmarks, including AIME-24, AIME-25, and OlymMATH, demonstrate that Sticker-TTS consistently surpasses strong baselines, including self-consistency and advanced reinforcement learning approaches, under comparable inference budgets. These results highlight the effectiveness of sticker-guided historical experience utilization. Our code and data are available at https://github.com/RUCAIBox/Sticker-TTS.
Estimating accurate and well-calibrated predictive uncertainty is important for enhancing the reliability of computer vision models, especially in safety-critical applications like traffic scene perception. While ensemble methods are commonly used to quantify uncertainty by combining multiple models, a mixture of experts (MoE) offers an efficient alternative by leveraging a gating network to dynamically weight expert predictions based on the input. Building on the promising use of MoEs for semantic segmentation in our previous works, we show that well-calibrated predictive uncertainty estimates can be extracted from MoEs without architectural modifications. We investigate three methods to extract predictive uncertainty estimates: predictive entropy, mutual information, and expert variance. We evaluate these methods for an MoE with two experts trained on a semantical split of the A2D2 dataset. Our results show that MoEs yield more reliable uncertainty estimates than ensembles in terms of conditional correctness metrics under out-of-distribution (OOD) data. Additionally, we evaluate routing uncertainty computed via gate entropy and find that simple gating mechanisms lead to better calibration of routing uncertainty estimates than more complex classwise gates. Finally, our experiments on the Cityscapes dataset suggest that increasing the number of experts can further enhance uncertainty calibration. Our code is available at https://github.com/KASTEL-MobilityLab/mixtures-of-experts/.
Poor sitting posture is a critical yet often overlooked factor contributing to long-term musculoskeletal disorders and physiological dysfunctions. Existing sitting posture monitoring systems, although leveraging visual, IMU, or pressure-based modalities, often suffer from coarse-grained recognition and lack the semantic expressiveness necessary for personalized feedback. In this paper, we propose \textbf{SitLLM}, a lightweight multimodal framework that integrates flexible pressure sensing with large language models (LLMs) to enable fine-grained posture understanding and personalized health-oriented response generation. SitLLM comprises three key components: (1) a \textit{Gaussian-Robust Sensor Embedding Module} that partitions pressure maps into spatial patches and injects local noise perturbations for robust feature extraction; (2) a \textit{Prompt-Driven Cross-Modal Alignment Module} that reprograms sensor embeddings into the LLM's semantic space via multi-head cross-attention using the pre-trained vocabulary embeddings; and (3) a \textit{Multi-Context Prompt Module} that fuses feature-level, structure-level, statistical-level, and semantic-level contextual information to guide instruction comprehension.
Knowledge-based visual question answering (KB-VQA) requires a model to understand images and utilize external knowledge to provide accurate answers. Existing approaches often directly augment models with retrieved information from knowledge sources while ignoring substantial knowledge redundancy, which introduces noise into the answering process. To address this, we propose a training-free framework with knowledge focusing for KB-VQA, that mitigates the impact of noise by enhancing knowledge relevance and reducing redundancy. First, for knowledge retrieval, our framework concludes essential parts from the image-question pairs, creating low-noise queries that enhance the retrieval of highly relevant knowledge. Considering that redundancy still persists in the retrieved knowledge, we then prompt large models to identify and extract answer-beneficial segments from knowledge. In addition, we introduce a selective knowledge integration strategy, allowing the model to incorporate knowledge only when it lacks confidence in answering the question, thereby mitigating the influence of redundant information. Our framework enables the acquisition of accurate and critical knowledge, and extensive experiments demonstrate that it outperforms state-of-the-art methods.
Knowledge graphs, a powerful tool for structuring information through relational triplets, have recently become the new front-runner in enhancing question-answering systems. While traditional Retrieval Augmented Generation (RAG) approaches are proficient in fact-based and local context-based extraction from concise texts, they encounter limitations when addressing the thematic and holistic understanding of complex, extensive texts, requiring a deeper analysis of both text and context. This paper presents a comprehensive technical comparative study of three different methodologies for constructing knowledge graph triplets and integrating them with Large Language Models (LLMs) for question answering: spaCy, Stanford CoreNLP-OpenIE, and GraphRAG, all leveraging open source technologies. We evaluate the effectiveness, feasibility, and adaptability of these methods by analyzing their capabilities, state of development, and their impact on the performance of LLM-based question answering. Experimental results indicate that while OpenIE provides the most comprehensive coverage of triplets, GraphRAG demonstrates superior reasoning abilities among the three. We conclude with a discussion on the strengths and limitations of each method and provide insights into future directions for improving knowledge graph-based question answering.
In brain-computer interface (BCI) systems, steady-state visual evoked potentials (SSVEP) and P300 responses have achieved widespread implementation owing to their superior information transfer rates (ITR) and minimal training requirements. These neurophysiological signals have exhibited robust efficacy and versatility in external device control, demonstrating enhanced precision and scalability. However, conventional implementations predominantly utilise liquid crystal display (LCD)-based visual stimulation paradigms, which present limitations in practical deployment scenarios. This investigation presents the development and evaluation of a novel light-emitting diode (LED)-based dual stimulation apparatus designed to enhance SSVEP classification accuracy through the integration of both SSVEP and P300 paradigms. The system employs four distinct frequencies, 7 Hz, 8 Hz, 9 Hz, and 10 Hz, corresponding to forward, backward, right, and left directional controls, respectively. Oscilloscopic verification confirmed the precision of these stimulation frequencies. Real-time feature extraction was accomplished through the concurrent analysis of maximum Fast Fourier Transform (FFT) amplitude and P300 peak detection to ascertain user intent. Directional control was determined by the frequency exhibiting maximal amplitude characteristics. The visual stimulation hardware demonstrated minimal frequency deviation, with error differentials ranging from 0.15%to 0.20%across all frequencies. The implemented signal processing algorithm successfully discriminated all four stimulus frequencies whilst correlating them with their respective P300 event markers. Classification accuracy was evaluated based on correct task intention recognition. The proposed hybrid system achieved a mean classification accuracy of 86.25%, coupled with an average ITR of 42.08 bits per minute (bpm).




The robustness of contrastive self-supervised learning (CSSL) for imbalanced datasets is largely unexplored. CSSL usually makes use of \emph{multi-view} assumptions to learn discriminatory features via similar and dissimilar data samples. CSSL works well on balanced datasets, but does not generalize well for imbalanced datasets. In a very recent paper, as part of future work, Yann LeCun pointed out that the self-supervised multiview framework can be extended to cases involving \emph{more than two views}. Taking a cue from this insight we propose a theoretical justification based on the concept of \emph{mutual information} to support the \emph{more than two views} objective and apply it to the problem of dataset imbalance in self-supervised learning. The proposed method helps extract representative characteristics of the tail classes by segregating between \emph{intra} and \emph{inter} discriminatory characteristics. We introduce a loss function that helps us to learn better representations by filtering out extreme features. Experimental evaluation on a variety of self-supervised frameworks (both contrastive and non-contrastive) also prove that the \emph{more than two view} objective works well for imbalanced datasets. We achieve a new state-of-the-art accuracy in self-supervised imbalanced dataset classification (2\% improvement in Cifar10-LT using Resnet-18, 5\% improvement in Cifar100-LT using Resnet-18, 3\% improvement in Imagenet-LT (1k) using Resnet-50).
Recently, Mamba-based methods, with its advantage in long-range information modeling and linear complexity, have shown great potential in optimizing both computational cost and performance of light field image super-resolution (LFSR). However, current multi-directional scanning strategies lead to inefficient and redundant feature extraction when applied to complex LF data. To overcome this challenge, we propose a Subspace Simple Scanning (Sub-SS) strategy, based on which we design the Subspace Simple Mamba Block (SSMB) to achieve more efficient and precise feature extraction. Furthermore, we propose a dual-stage modeling strategy to address the limitation of state space in preserving spatial-angular and disparity information, thereby enabling a more comprehensive exploration of non-local spatial-angular correlations. Specifically, in stage I, we introduce the Spatial-Angular Residual Subspace Mamba Block (SA-RSMB) for shallow spatial-angular feature extraction; in stage II, we use a dual-branch parallel structure combining the Epipolar Plane Mamba Block (EPMB) and Epipolar Plane Transformer Block (EPTB) for deep epipolar feature refinement. Building upon meticulously designed modules and strategies, we introduce a hybrid Mamba-Transformer framework, termed LFMT. LFMT integrates the strengths of Mamba and Transformer models for LFSR, enabling comprehensive information exploration across spatial, angular, and epipolar-plane domains. Experimental results demonstrate that LFMT significantly outperforms current state-of-the-art methods in LFSR, achieving substantial improvements in performance while maintaining low computational complexity on both real-word and synthetic LF datasets.