Information extraction is the process of automatically extracting structured information from unstructured text data.
Being infinite dimensional, non-parametric information geometry has long faced an "intractability barrier" due to the fact that the Fisher-Rao metric is now a functional incurring difficulties in defining its inverse. This paper introduces a novel framework to resolve the intractability with an Orthogonal Decomposition of the Tangent Space ($T_fM=S \oplus S^{\perp}$), where S represents an observable covariate subspace. Through the decomposition, we derive the Covariate Fisher Information Matrix (cFIM), denoted as $G_f$, which is a finite-dimensional and computable representative of information extractable from the manifold's geometry. Indeed, by proving the Trace Theorem: $H_G(f)=\text{Tr}(G_f)$, we establish a rigorous foundation for the G-entropy previously introduced by us, thereby identifying it not merely as a gradient-based regularizer, but also as a fundamental geometric invariant representing the total explainable statistical information captured by the probability distribution associated with the model. Furthermore, we establish a link between $G_f$ and the second-order derivative (i.e. the curvature) of the KL-divergence, leading to the notion of Covariate Cramér-Rao Lower Bound(CRLB). We demonstrate that $G_f$ is congruent to the Efficient Fisher Information Matrix, thereby providing fundamental limits of variance for semi-parametric estimators. Finally, we apply our geometric framework to the Manifold Hypothesis, lifting the latter from a heuristic assumption into a testable condition of rank-deficiency within the cFIM. By defining the Information Capture Ratio, we provide a rigorous method for estimating intrinsic dimensionality in high-dimensional data. In short, our work bridges the gap between abstract information geometry and the demand of explainable AI, by providing a tractable path for revealing the statistical coverage and the efficiency of non-parametric models.
The rapid spread of multimodal misinformation poses a growing challenge for automated fact-checking systems. Existing approaches, including large vision language models (LVLMs) and deep multimodal fusion methods, often fall short due to limited reasoning and shallow evidence utilization. A key bottleneck is the lack of dedicated datasets that provide complete real-world multimodal misinformation instances accompanied by annotated reasoning processes and verifiable evidence. To address this limitation, we introduce RW-Post, a high-quality and explainable dataset for real-world multimodal fact-checking. RW-Post aligns real-world multimodal claims with their original social media posts, preserving the rich contextual information in which the claims are made. In addition, the dataset includes detailed reasoning and explicitly linked evidence, which are derived from human written fact-checking articles via a large language model assisted extraction pipeline, enabling comprehensive verification and explanation. Building upon RW-Post, we propose AgentFact, an agent-based multimodal fact-checking framework designed to emulate the human verification workflow. AgentFact consists of five specialized agents that collaboratively handle key fact-checking subtasks, including strategy planning, high-quality evidence retrieval, visual analysis, reasoning, and explanation generation. These agents are orchestrated through an iterative workflow that alternates between evidence searching and task-aware evidence filtering and reasoning, facilitating strategic decision-making and systematic evidence analysis. Extensive experimental results demonstrate that the synergy between RW-Post and AgentFact substantially improves both the accuracy and interpretability of multimodal fact-checking.
Micro-gesture recognition and behavior-based emotion prediction are both highly challenging tasks that require modeling subtle, fine-grained human behaviors, primarily leveraging video and skeletal pose data. In this work, we present two multimodal frameworks designed to tackle both problems on the iMiGUE dataset. For micro-gesture classification, we explore the complementary strengths of RGB and 3D pose-based representations to capture nuanced spatio-temporal patterns. To comprehensively represent gestures, video, and skeletal embeddings are extracted using MViTv2-S and 2s-AGCN, respectively. Then, they are integrated through a Cross-Modal Token Fusion module to combine spatial and pose information. For emotion recognition, our framework extends to behavior-based emotion prediction, a binary classification task identifying emotional states based on visual cues. We leverage facial and contextual embeddings extracted using SwinFace and MViTv2-S models and fuse them through an InterFusion module designed to capture emotional expressions and body gestures. Experiments conducted on the iMiGUE dataset, within the scope of the MiGA 2025 Challenge, demonstrate the robust performance and accuracy of our method in the behavior-based emotion prediction task, where our approach secured 2nd place.
Large language models (LLMs) frequently produce contextual hallucinations, where generated content contradicts or ignores information explicitly stated in the prompt. Such errors are particularly problematic in deterministic automation workflows, where inputs are fixed and correctness is unambiguous. We introduce a simple and model-agnostic framework that provides explicit probabilistic guarantees for reducing hallucinations in this setting. We formalize the notion of a specific task, defined by a fixed input and a deterministic correctness criterion, and show that issuing the same prompt in independent context windows yields an exponential reduction in the probability that all model outputs are incorrect. To identify a correct answer among repeated runs, we incorporate an LLM-as-a-judge and prove that the probability that the judged pipeline fails decays at a rate determined by the judge's true- and false-positive probabilities. When the judge is imperfect, we strengthen it through majority vote over independent judge calls, obtaining ensemble-level error rates that decrease exponentially in the number of votes. This yields an explicit bound on the probability that the pipeline selects a hallucinated answer. Experiments on controlled extraction tasks with synthetic noisy judges match these predictions exactly: pipeline failure decreases exponentially with the number of repetitions, and hallucination-selection decreases exponentially with the number of judges in the ensemble. Together, these results provide a lightweight, modular, and theoretically grounded method for driving hallucination probabilities arbitrarily low in fixed-input LLM workflows-without modifying model weights, decoding strategies, or prompt engineering.
The integration of Multimodal Large Language Models (MLLMs) into chemistry promises to revolutionize scientific discovery, yet their ability to comprehend the dense, graphical language of reactions within authentic literature remains underexplored. Here, we introduce RxnBench, a multi-tiered benchmark designed to rigorously evaluate MLLMs on chemical reaction understanding from scientific PDFs. RxnBench comprises two tasks: Single-Figure QA (SF-QA), which tests fine-grained visual perception and mechanistic reasoning using 1,525 questions derived from 305 curated reaction schemes, and Full-Document QA (FD-QA), which challenges models to synthesize information from 108 articles, requiring cross-modal integration of text, schemes, and tables. Our evaluation of MLLMs reveals a critical capability gap: while models excel at extracting explicit text, they struggle with deep chemical logic and precise structural recognition. Notably, models with inference-time reasoning significantly outperform standard architectures, yet none achieve 50\% accuracy on FD-QA. These findings underscore the urgent need for domain-specific visual encoders and stronger reasoning engines to advance autonomous AI chemists.
Realistic visual simulations are omnipresent, yet their creation requires computing time, rendering, and expert animation knowledge. Open-vocabulary visual effects generation from text inputs emerges as a promising solution that can unlock immense creative potential. However, current pipelines lack both physical realism and effective language interfaces, requiring slow offline optimization. In contrast, PhysTalk takes a 3D Gaussian Splatting (3DGS) scene as input and translates arbitrary user prompts into real time, physics based, interactive 4D animations. A large language model (LLM) generates executable code that directly modifies 3DGS parameters through lightweight proxies and particle dynamics. Notably, PhysTalk is the first framework to couple 3DGS directly with a physics simulator without relying on time consuming mesh extraction. While remaining open vocabulary, this design enables interactive 3D Gaussian animation via collision aware, physics based manipulation of arbitrary, multi material objects. Finally, PhysTalk is train-free and computationally lightweight: this makes 4D animation broadly accessible and shifts these workflows from a "render and wait" paradigm toward an interactive dialogue with a modern, physics-informed pipeline.
Intelligent Connected Vehicles (ICVs) rely on high-speed data transmission for efficient and safety-critical services. However, the scarcity of wireless resources limits the capabilities of ICVs. Semantic Communication (SemCom) systems can alleviate this issue by extracting and transmitting task-relevant information, termed semantic information, instead of the entire raw data. Despite this, we reveal that residual redundancy persists within SemCom systems, where not all instances under the same semantic category are equally critical for downstream tasks. To tackle this issue, we introduce Instance Communication (InsCom), which elevates communication from the semantic level to the instance level for ICVs. Specifically, InsCom uses a scene graph generation model to identify all image instances and analyze their inter-relationships, thus distinguishing between semantically identical instances. Additionally, it applies user-configurable, task-critical criteria based on subject semantics and relation-object pairs to filter recognized instances. Consequently, by transmitting only task-critical instances, InsCom significantly reduces data redundancy, substantially enhancing transmission efficiency within limited wireless resources. Evaluations across various datasets and wireless channel conditions show that InsCom achieves a data volume reduction of over 7.82 times and a quality improvement ranging from 1.75 to 14.03 dB compared to the state-of-the-art SemCom systems.
Optical-readout Time Projection Chambers (TPCs) produce megapixel-scale images whose fine-grained topological information is essential for rare-event searches, but whose size challenges real-time data selection. We present an unsupervised, reconstruction-based anomaly-detection strategy for fast Region-of-Interest (ROI) extraction that operates directly on minimally processed camera frames. A convolutional autoencoder trained exclusively on pedestal images learns the detector noise morphology without labels, simulation, or fine-grained calibration. Applied to standard data-taking frames, localized reconstruction residuals identify particle-induced structures, from which compact ROIs are extracted via thresholding and spatial clustering. Using real data from the CYGNO optical TPC prototype, we compare two pedestal-trained autoencoder configurations that differ only in their training objective, enabling a controlled study of its impact. The best configuration retains (93.0 +/- 0.2)% of reconstructed signal intensity while discarding (97.8 +/- 0.1)% of the image area, with an inference time of approximately 25 ms per frame on a consumer GPU. The results demonstrate that careful design of the training objective is critical for effective reconstruction-based anomaly detection and that pedestal-trained autoencoders provide a transparent and detector-agnostic baseline for online data reduction in optical TPCs.
Image-based 3D object detection aims to identify and localize objects in 3D space using only RGB images, eliminating the need for expensive depth sensors required by point cloud-based methods. Existing image-based approaches face two critical challenges: methods achieving high accuracy typically require dense 3D supervision, while those operating without such supervision struggle to extract accurate geometry from images alone. In this paper, we present GVSynergy-Det, a novel framework that enhances 3D detection through synergistic Gaussian-Voxel representation learning. Our key insight is that continuous Gaussian and discrete voxel representations capture complementary geometric information: Gaussians excel at modeling fine-grained surface details while voxels provide structured spatial context. We introduce a dual-representation architecture that: 1) adapts generalizable Gaussian Splatting to extract complementary geometric features for detection tasks, and 2) develops a cross-representation enhancement mechanism that enriches voxel features with geometric details from Gaussian fields. Unlike previous methods that either rely on time-consuming per-scene optimization or utilize Gaussian representations solely for depth regularization, our synergistic strategy directly leverages features from both representations through learnable integration, enabling more accurate object localization. Extensive experiments demonstrate that GVSynergy-Det achieves state-of-the-art results on challenging indoor benchmarks, significantly outperforming existing methods on both ScanNetV2 and ARKitScenes datasets, all without requiring any depth or dense 3D geometry supervision (e.g., point clouds or TSDF).
Weak signal learning (WSL) is a common challenge in many fields like fault diagnosis, medical imaging, and autonomous driving, where critical information is often masked by noise and interference, making feature identification difficult. Even in tasks with abundant strong signals, the key to improving model performance often lies in effectively extracting weak signals. However, the lack of dedicated datasets has long constrained research. To address this, we construct the first specialized dataset for weak signal feature learning, containing 13,158 spectral samples. It features low SNR dominance (over 55% samples with SNR below 50) and extreme class imbalance (class ratio up to 29:1), providing a challenging benchmark for classification and regression in weak signal scenarios. We also propose a dual-view representation (vector + time-frequency map) and a PDVFN model tailored to low SNR, distribution skew, and dual imbalance. PDVFN extracts local sequential features and global frequency-domain structures in parallel, following principles of local enhancement, sequential modeling, noise suppression, multi-scale capture, frequency extraction, and global perception. This multi-source complementarity enhances representation for low-SNR and imbalanced data, offering a novel solution for WSL tasks like astronomical spectroscopy. Experiments show our method achieves higher accuracy and robustness in handling weak signals, high noise, and extreme class imbalance, especially in low SNR and imbalanced scenarios. This study provides a dedicated dataset, a baseline model, and establishes a foundation for future WSL research.