Abstract:Realistic adversarial attacks on various camera-based perception tasks of autonomous vehicles have been successfully demonstrated so far. However, only a few works considered attacks on traffic light detectors. This work shows how CNNs for traffic light detection can be attacked with printed patches. We propose a threat model, where each instance of a traffic light is attacked with a patch placed under it, and describe a training strategy. We demonstrate successful adversarial patch attacks in universal settings. Our experiments show realistic targeted red-to-green label-flipping attacks and attacks on pictogram classification. Finally, we perform a real-world evaluation with printed patches and demonstrate attacks in the lab settings with a mobile traffic light for construction sites and in a test area with stationary traffic lights. Our code is available at https://github.com/KASTEL-MobilityLab/attacks-on-traffic-light-detection.
Abstract:This paper addresses the challenges of training end-to-end autonomous driving agents using Reinforcement Learning (RL). RL agents are typically trained in a fixed set of scenarios and nominal behavior of surrounding road users in simulations, limiting their generalization and real-life deployment. While domain randomization offers a potential solution by randomly sampling driving scenarios, it frequently results in inefficient training and sub-optimal policies due to the high variance among training scenarios. To address these limitations, we propose an automatic curriculum learning framework that dynamically generates driving scenarios with adaptive complexity based on the agent's evolving capabilities. Unlike manually designed curricula that introduce expert bias and lack scalability, our framework incorporates a ``teacher'' that automatically generates and mutates driving scenarios based on their learning potential -- an agent-centric metric derived from the agent's current policy -- eliminating the need for expert design. The framework enhances training efficiency by excluding scenarios the agent has mastered or finds too challenging. We evaluate our framework in a reinforcement learning setting where the agent learns a driving policy from camera images. Comparative results against baseline methods, including fixed scenario training and domain randomization, demonstrate that our approach leads to enhanced generalization, achieving higher success rates: +9\% in low traffic density, +21\% in high traffic density, and faster convergence with fewer training steps. Our findings highlight the potential of ACL in improving the robustness and efficiency of RL-based autonomous driving agents.
Abstract:Trajectory prediction is crucial for autonomous driving, enabling vehicles to navigate safely by anticipating the movements of surrounding road users. However, current deep learning models often lack trustworthiness as their predictions can be physically infeasible and illogical to humans. To make predictions more trustworthy, recent research has incorporated prior knowledge, like the social force model for modeling interactions and kinematic models for physical realism. However, these approaches focus on priors that suit either vehicles or pedestrians and do not generalize to traffic with mixed agent classes. We propose incorporating interaction and kinematic priors of all agent classes--vehicles, pedestrians, and cyclists with class-specific interaction layers to capture agent behavioral differences. To improve the interpretability of the agent interactions, we introduce DG-SFM, a rule-based interaction importance score that guides the interaction layer. To ensure physically feasible predictions, we proposed suitable kinematic models for all agent classes with a novel pedestrian kinematic model. We benchmark our approach on the Argoverse 2 dataset, using the state-of-the-art transformer HPTR as our baseline. Experiments demonstrate that our method improves interaction interpretability, revealing a correlation between incorrect predictions and divergence from our interaction prior. Even though incorporating the kinematic models causes a slight decrease in accuracy, they eliminate infeasible trajectories found in the dataset and the baseline model. Thus, our approach fosters trust in trajectory prediction as its interaction reasoning is interpretable, and its predictions adhere to physics.
Abstract:Reinforcement Learning (RL) is a promising approach for achieving autonomous driving due to robust decision-making capabilities. RL learns a driving policy through trial and error in traffic scenarios, guided by a reward function that combines the driving objectives. The design of such reward function has received insufficient attention, yielding ill-defined rewards with various pitfalls. Safety, in particular, has long been regarded only as a penalty for collisions. This leaves the risks associated with actions leading up to a collision unaddressed, limiting the applicability of RL in real-world scenarios. To address these shortcomings, our work focuses on enhancing the reward formulation by defining a set of driving objectives and structuring them hierarchically. Furthermore, we discuss the formulation of these objectives in a normalized manner to transparently determine their contribution to the overall reward. Additionally, we introduce a novel risk-aware objective for various driving interactions based on a two-dimensional ellipsoid function and an extension of Responsibility-Sensitive Safety (RSS) concepts. We evaluate the efficacy of our proposed reward in unsignalized intersection scenarios with varying traffic densities. The approach decreases collision rates by 21\% on average compared to baseline rewards and consistently surpasses them in route progress and cumulative reward, demonstrating its capability to promote safer driving behaviors while maintaining high-performance levels.
Abstract:Accurate prediction of surrounding road users' trajectories is essential for safe and efficient autonomous driving. While deep learning models have improved performance, challenges remain in preventing off-road predictions and ensuring kinematic feasibility. Existing methods incorporate road-awareness modules and enforce kinematic constraints but lack plausibility guarantees and often introduce trade-offs in complexity and flexibility. This paper proposes a novel framework that formulates trajectory prediction as a constrained regression guided by permissible driving directions and their boundaries. Using the agent's current state and an HD map, our approach defines the valid boundaries and ensures on-road predictions by training the network to learn superimposed paths between left and right boundary polylines. To guarantee feasibility, the model predicts acceleration profiles that determine the vehicle's travel distance along these paths while adhering to kinematic constraints. We evaluate our approach on the Argoverse-2 dataset against the HPTR baseline. Our approach shows a slight decrease in benchmark metrics compared to HPTR but notably improves final displacement error and eliminates infeasible trajectories. Moreover, the proposed approach has superior generalization to less prevalent maneuvers and unseen out-of-distribution scenarios, reducing the off-road rate under adversarial attacks from 66\% to just 1\%. These results highlight the effectiveness of our approach in generating feasible and robust predictions.
Abstract:This paper introduces a centralized approach for fuel-efficient urban platooning by leveraging real-time Vehicle- to-Everything (V2X) communication and Signal Phase and Timing (SPaT) data. A nonlinear Model Predictive Control (MPC) algorithm optimizes the trajectories of platoon leader vehicles, employing an asymmetric cost function to minimize fuel-intensive acceleration. Following vehicles utilize a gap- and velocity-based control strategy, complemented by dynamic platoon splitting logic communicated through Platoon Control Messages (PCM) and Platoon Awareness Messages (PAM). Simulation results obtained from the CARLA environment demonstrate substantial fuel savings of up to 41.2%, along with smoother traffic flows, fewer vehicle stops, and improved intersection throughput.
Abstract:Traffic light perception is an essential component of the camera-based perception system for autonomous vehicles, enabling accurate detection and interpretation of traffic lights to ensure safe navigation through complex urban environments. In this work, we propose a modularized perception framework that integrates state-of-the-art detection models with a novel real-time association and decision framework, enabling seamless deployment into an autonomous driving stack. To address the limitations of existing public datasets, we introduce the ATLAS dataset, which provides comprehensive annotations of traffic light states and pictograms across diverse environmental conditions and camera setups. This dataset is publicly available at https://url.fzi.de/ATLAS. We train and evaluate several state-of-the-art traffic light detection architectures on ATLAS, demonstrating significant performance improvements in both accuracy and robustness. Finally, we evaluate the framework in real-world scenarios by deploying it in an autonomous vehicle to make decisions at traffic light-controlled intersections, highlighting its reliability and effectiveness for real-time operation.
Abstract:For utilizing autonomous vehicle in urban areas a reliable localization is needed. Especially when HD maps are used, a precise and repeatable method has to be chosen. Therefore accurate map generation but also re-localization against these maps is necessary. Due to best 3D reconstruction of the surrounding, LiDAR has become a reliable modality for localization. The latest LiDAR odometry estimation are based on iterative closest point (ICP) approaches, namely KISS-ICP and SAGE-ICP. We extend the capabilities of KISS-ICP by incorporating semantic information into the point alignment process using a generalizable approach with minimal parameter tuning. This enhancement allows us to surpass KISS-ICP in terms of absolute trajectory error (ATE), the primary metric for map accuracy. Additionally, we improve the Cartographer mapping framework to handle semantic information. Cartographer facilitates loop closure detection over larger areas, mitigating odometry drift and further enhancing ATE accuracy. By integrating semantic information into the mapping process, we enable the filtering of specific classes, such as parked vehicles, from the resulting map. This filtering improves relocalization quality by addressing temporal changes, such as vehicles being moved.
Abstract:Deep neural networks for aerial image segmentation require large amounts of labeled data, but high-quality aerial datasets with precise annotations are scarce and costly to produce. To address this limitation, we propose a self-supervised pretraining method that improves segmentation performance while reducing reliance on labeled data. Our approach uses inpainting-based pretraining, where the model learns to reconstruct missing regions in aerial images, capturing their inherent structure before being fine-tuned for road extraction. This method improves generalization, enhances robustness to domain shifts, and is invariant to model architecture and dataset choice. Experiments show that our pretraining significantly boosts segmentation accuracy, especially in low-data regimes, making it a scalable solution for aerial image analysis.
Abstract:Vulnerability to adversarial attacks is a well-known deficiency of deep neural networks. Larger networks are generally more robust, and ensembling is one method to increase adversarial robustness: each model's weaknesses are compensated by the strengths of others. While an ensemble uses a deterministic rule to combine model outputs, a mixture of experts (MoE) includes an additional learnable gating component that predicts weights for the outputs of the expert models, thus determining their contributions to the final prediction. MoEs have been shown to outperform ensembles on specific tasks, yet their susceptibility to adversarial attacks has not been studied yet. In this work, we evaluate the adversarial vulnerability of MoEs for semantic segmentation of urban and highway traffic scenes. We show that MoEs are, in most cases, more robust to per-instance and universal white-box adversarial attacks and can better withstand transfer attacks. Our code is available at \url{https://github.com/KASTEL-MobilityLab/mixtures-of-experts/}.