Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.
This paper expands the cascaded network branch of the autoencoder-based multi-task learning (MTL) framework for dynamic facial expression recognition, namely Multi-Task Cascaded Autoencoder for Dynamic Facial Expression Recognition (MTCAE-DFER). MTCAE-DFER builds a plug-and-play cascaded decoder module, which is based on the Vision Transformer (ViT) architecture and employs the decoder concept of Transformer to reconstruct the multi-head attention module. The decoder output from the previous task serves as the query (Q), representing local dynamic features, while the Video Masked Autoencoder (VideoMAE) shared encoder output acts as both the key (K) and value (V), representing global dynamic features. This setup facilitates interaction between global and local dynamic features across related tasks. Additionally, this proposal aims to alleviate overfitting of complex large model. We utilize autoencoder-based multi-task cascaded learning approach to explore the impact of dynamic face detection and dynamic face landmark on dynamic facial expression recognition, which enhances the model's generalization ability. After we conduct extensive ablation experiments and comparison with state-of-the-art (SOTA) methods on various public datasets for dynamic facial expression recognition, the robustness of the MTCAE-DFER model and the effectiveness of global-local dynamic feature interaction among related tasks have been proven.




Silent speech interfaces (SSI) are being actively developed to assist individuals with communication impairments who have long suffered from daily hardships and a reduced quality of life. However, silent sentences are difficult to segment and recognize due to elision and linking. A novel silent speech sentence recognition method is proposed to convert the facial motion signals collected by six-axis accelerometers into transcribed words and sentences. A Conformer-based neural network with the Connectionist-Temporal-Classification algorithm is used to gain contextual understanding and translate the non-acoustic signals into words sequences, solely requesting the constituent words in the database. Test results show that the proposed method achieves a 97.17% accuracy in sentence recognition, surpassing the existing silent speech recognition methods with a typical accuracy of 85%-95%, and demonstrating the potential of accelerometers as an available SSI modality for high-accuracy silent speech sentence recognition.
Lip Reading, or Visual Automatic Speech Recognition (V-ASR), is a complex task requiring the interpretation of spoken language exclusively from visual cues, primarily lip movements and facial expressions. This task is especially challenging due to the absence of auditory information and the inherent ambiguity when visually distinguishing phonemes that have overlapping visemes where different phonemes appear identical on the lips. Current methods typically attempt to predict words or characters directly from these visual cues, but this approach frequently encounters high error rates due to coarticulation effects and viseme ambiguity. We propose a novel two-stage, phoneme-centric framework for Visual Automatic Speech Recognition (V-ASR) that addresses these longstanding challenges. First, our model predicts a compact sequence of phonemes from visual inputs using a Video Transformer with a CTC head, thereby reducing the task complexity and achieving robust speaker invariance. This phoneme output then serves as the input to a fine-tuned Large Language Model (LLM), which reconstructs coherent words and sentences by leveraging broader linguistic context. Unlike existing methods that either predict words directly-often faltering on visually similar phonemes-or rely on large-scale multimodal pre-training, our approach explicitly encodes intermediate linguistic structure while remaining highly data efficient. We demonstrate state-of-the-art performance on two challenging datasets, LRS2 and LRS3, where our method achieves significant reductions in Word Error Rate (WER) achieving a SOTA WER of 18.7 on LRS3 despite using 99.4% less labelled data than the next best approach.
Recent Customized Portrait Generation (CPG) methods, taking a facial image and a textual prompt as inputs, have attracted substantial attention. Although these methods generate high-fidelity portraits, they fail to prevent the generated portraits from being tracked and misused by malicious face recognition systems. To address this, this paper proposes a Customized Portrait Generation framework with facial Adversarial attacks (Adv-CPG). Specifically, to achieve facial privacy protection, we devise a lightweight local ID encryptor and an encryption enhancer. They implement progressive double-layer encryption protection by directly injecting the target identity and adding additional identity guidance, respectively. Furthermore, to accomplish fine-grained and personalized portrait generation, we develop a multi-modal image customizer capable of generating controlled fine-grained facial features. To the best of our knowledge, Adv-CPG is the first study that introduces facial adversarial attacks into CPG. Extensive experiments demonstrate the superiority of Adv-CPG, e.g., the average attack success rate of the proposed Adv-CPG is 28.1% and 2.86% higher compared to the SOTA noise-based attack methods and unconstrained attack methods, respectively.




Facial Emotion Recognition has emerged as increasingly pivotal in the domain of User Experience, notably within modern usability testing, as it facilitates a deeper comprehension of user satisfaction and engagement. This study aims to extend the ResEmoteNet model by employing a knowledge distillation framework to develop Mini-ResEmoteNet models - lightweight student models - tailored for usability testing. Experiments were conducted on the FER2013 and RAF-DB datasets to assess the efficacy of three student model architectures: Student Model A, Student Model B, and Student Model C. Their development involves reducing the number of feature channels in each layer of the teacher model by approximately 50%, 75%, and 87.5%. Demonstrating exceptional performance on the FER2013 dataset, Student Model A (E1) achieved a test accuracy of 76.33%, marking a 0.21% absolute improvement over EmoNeXt. Moreover, the results exhibit absolute improvements in terms of inference speed and memory usage during inference compared to the ResEmoteNet model. The findings indicate that the proposed methods surpass other state-of-the-art approaches.




Vision Transformers (ViTs) are increasingly being adopted in various sensitive vision applications - like medical diagnosis, facial recognition, etc. To improve the interpretability of such models, many approaches attempt to forward-align them with carefully annotated abstract, human-understandable semantic entities - concepts. Concepts provide global rationales to the model predictions and can be quickly understood/intervened on by domain experts. Most current research focuses on designing model-agnostic, plug-and-play generic concept-based explainability modules that do not incorporate the inner workings of foundation models (e.g., inductive biases, scale invariance, etc.) during training. To alleviate this issue for ViTs, in this paper, we propose a novel Concept Representation Alignment Module (CRAM) which learns both scale and position-aware representations from multi-scale feature pyramids and patch representations respectively. CRAM further aligns these representations with concept annotations through an attention matrix. The proposed CRAM module improves the predictive performance of ViT architectures and also provides accurate and robust concept explanations as demonstrated on five datasets - including three widely used benchmarks (CUB, Pascal APY, Concept-MNIST) and 2 real-world datasets (AWA2, KITS).




Social intelligence, the ability to interpret emotions, intentions, and behaviors, is essential for effective communication and adaptive responses. As robots and AI systems become more prevalent in caregiving, healthcare, and education, the demand for AI that can interact naturally with humans grows. However, creating AI that seamlessly integrates multiple modalities, such as vision and speech, remains a challenge. Current video-based methods for social intelligence rely on general video recognition or emotion recognition techniques, often overlook the unique elements inherent in human interactions. To address this, we propose the Looped Video Debating (LVD) framework, which integrates Large Language Models (LLMs) with visual information, such as facial expressions and body movements, to enhance the transparency and reliability of question-answering tasks involving human interaction videos. Our results on the Social-IQ 2.0 benchmark show that LVD achieves state-of-the-art performance without fine-tuning. Furthermore, supplementary human annotations on existing datasets provide insights into the model's accuracy, guiding future improvements in AI-driven social intelligence.
Automated Face Recognition Systems (FRSs), developed using deep learning models, are deployed worldwide for identity verification and facial attribute analysis. The performance of these models is determined by a complex interdependence among the model architecture, optimization/loss function and datasets. Although FRSs have surpassed human-level accuracy, they continue to be disparate against certain demographics. Due to the ubiquity of applications, it is extremely important to understand the impact of the three components -- model architecture, loss function and face image dataset on the accuracy-disparity trade-off to design better, unbiased platforms. In this work, we perform an in-depth analysis of three FRSs for the task of gender prediction, with various architectural modifications resulting in ten deep-learning models coupled with four loss functions and benchmark them on seven face datasets across 266 evaluation configurations. Our results show that all three components have an individual as well as a combined impact on both accuracy and disparity. We identify that datasets have an inherent property that causes them to perform similarly across models, independent of the choice of loss functions. Moreover, the choice of dataset determines the model's perceived bias -- the same model reports bias in opposite directions for three gender-balanced datasets of ``in-the-wild'' face images of popular individuals. Studying the facial embeddings shows that the models are unable to generalize a uniform definition of what constitutes a ``female face'' as opposed to a ``male face'', due to dataset diversity. We provide recommendations to model developers on using our study as a blueprint for model development and subsequent deployment.
Compound Expression Recognition (CER) is crucial for understanding human emotions and improving human-computer interaction. However, CER faces challenges due to the complexity of facial expressions and the difficulty of capturing subtle emotional cues. To address these issues, we propose a novel approach leveraging Large Vision-Language Models (LVLMs). Our method employs a two-stage fine-tuning process: first, pre-trained LVLMs are fine-tuned on basic facial expressions to establish foundational patterns; second, the model is further optimized on a compound-expression dataset to refine visual-language feature interactions. Our approach achieves advanced accuracy on the RAF-DB dataset and demonstrates strong zero-shot generalization on the C-EXPR-DB dataset, showcasing its potential for real-world applications in emotion analysis and human-computer interaction.




Understanding emotional signals in older adults is crucial for designing virtual assistants that support their well-being. However, existing affective computing models often face significant limitations: (1) limited availability of datasets representing older adults, especially in non-English-speaking populations, and (2) poor generalization of models trained on younger or homogeneous demographics. To address these gaps, this study evaluates state-of-the-art affective computing models -- including facial expression recognition, text sentiment analysis, and smile detection -- using videos of older adults interacting with either a person or a virtual avatar. As part of this effort, we introduce a novel dataset featuring Spanish-speaking older adults engaged in human-to-human video interviews. Through three comprehensive analyses, we investigate (1) the alignment between human-annotated labels and automatic model outputs, (2) the relationships between model outputs across different modalities, and (3) individual variations in emotional signals. Using both the Wizard of Oz (WoZ) dataset and our newly collected dataset, we uncover limited agreement between human annotations and model predictions, weak consistency across modalities, and significant variability among individuals. These findings highlight the shortcomings of generalized emotion perception models and emphasize the need of incorporating personal variability and cultural nuances into future systems.