Abstract:Adversarial examples have revealed the vulnerability of deep learning models and raised serious concerns about information security. The transfer-based attack is a hot topic in black-box attacks that are practical to real-world scenarios where the training datasets, parameters, and structure of the target model are unknown to the attacker. However, few methods consider the particularity of class-specific deep models for fine-grained vision tasks, such as face recognition (FR), giving rise to unsatisfactory attacking performance. In this work, we first investigate what in a face exactly contributes to the embedding learning of FR models and find that both decisive and auxiliary facial features are specific to each FR model, which is quite different from the biological mechanism of human visual system. Accordingly we then propose a novel attack method named Attention-aggregated Attack (AAA) to enhance the transferability of adversarial examples against FR, which is inspired by the attention divergence and aims to destroy the facial features that are critical for the decision-making of other FR models by imitating their attentions on the clean face images. Extensive experiments conducted on various FR models validate the superiority and robust effectiveness of the proposed method over existing methods.
Abstract:This paper proposes a simple, accurate, and robust approach to single image nonparametric blind Super-Resolution (SR). This task is formulated as a functional to be minimized with respect to both an intermediate super-resolved image and a nonparametric blur-kernel. The proposed approach includes a convolution consistency constraint which uses a non-blind learning-based SR result to better guide the estimation process. Another key component is the unnatural bi-l0-l2-norm regularization imposed on the super-resolved, sharp image and the blur-kernel, which is shown to be quite beneficial for estimating the blur-kernel accurately. The numerical optimization is implemented by coupling the splitting augmented Lagrangian and the conjugate gradient (CG). Using the pre-estimated blur-kernel, we finally reconstruct the SR image by a very simple non-blind SR method that uses a natural image prior. The proposed approach is demonstrated to achieve better performance than the recent method by Michaeli and Irani [2] in both terms of the kernel estimation accuracy and image SR quality.
Abstract:In blind motion deblurring, leading methods today tend towards highly non-convex approximations of the l0-norm, especially in the image regularization term. In this paper, we propose a simple, effective and fast approach for the estimation of the motion blur-kernel, through a bi-l0-l2-norm regularization imposed on both the intermediate sharp image and the blur-kernel. Compared with existing methods, the proposed regularization is shown to be more effective and robust, leading to a more accurate motion blur-kernel and a better final restored image. A fast numerical scheme is deployed for alternatingly computing the sharp image and the blur-kernel, by coupling the operator splitting and augmented Lagrangian methods. Experimental results on both a benchmark image dataset and real-world motion blurred images show that the proposed approach is highly competitive with state-of-the- art methods in both deblurring effectiveness and computational efficiency.