LIVIA ILLS Dept. of Systems Engineering ETS Montreal Canada
Abstract:Finetuning vision foundation models often improves in-domain accuracy but comes at the cost of robustness under distribution shift. We revisit Mixout, a stochastic regularizer that intermittently replaces finetuned weights with their pretrained reference, through the lens of a single-run, weight-sharing implicit ensemble. This perspective reveals three key levers that govern robustness: the \emph{masking anchor}, \emph{resampling frequency}, and \emph{mask sparsity}. Guided by this analysis, we introduce GMixout, which (i) replaces the fixed anchor with an exponential moving-average snapshot that adapts during training, and (ii) regulates masking period via an explicit resampling-frequency hyperparameter. Our sparse-kernel implementation updates only a small fraction of parameters with no inference-time overhead, enabling training on consumer-grade GPUs. Experiments on benchmarks covering covariate shift, corruption, and class imbalance, ImageNet / ImageNet-LT, DomainNet, iWildCam, and CIFAR100-C, GMixout consistently improves in-domain accuracy beyond zero-shot performance while surpassing both Model Soups and strong parameter-efficient finetuning baselines under distribution shift.
Abstract:Ensembling fine-tuned models initialized from powerful pre-trained weights is a common strategy to improve robustness under distribution shifts, but it comes with substantial computational costs due to the need to train and store multiple models. Dropout offers a lightweight alternative by simulating ensembles through random neuron deactivation; however, when applied to pre-trained models, it tends to over-regularize and disrupt critical representations necessary for generalization. In this work, we investigate Mixout, a stochastic regularization technique that provides an alternative to Dropout for domain generalization. Rather than deactivating neurons, Mixout mitigates overfitting by probabilistically swapping a subset of fine-tuned weights with their pre-trained counterparts during training, thereby maintaining a balance between adaptation and retention of prior knowledge. Our study reveals that achieving strong performance with Mixout on domain generalization benchmarks requires a notably high masking probability of 0.9 for ViTs and 0.8 for ResNets. While this may seem like a simple adjustment, it yields two key advantages for domain generalization: (1) higher masking rates more strongly penalize deviations from the pre-trained parameters, promoting better generalization to unseen domains; and (2) high-rate masking substantially reduces computational overhead, cutting gradient computation by up to 45% and gradient memory usage by up to 90%. Experiments across five domain generalization benchmarks, PACS, VLCS, OfficeHome, TerraIncognita, and DomainNet, using ResNet and ViT architectures, show that our approach, High-rate Mixout, achieves out-of-domain accuracy comparable to ensemble-based methods while significantly reducing training costs.
Abstract:Vision-language object detectors (VLODs) such as YOLO-World and Grounding DINO achieve impressive zero-shot recognition by aligning region proposals with text representations. However, their performance often degrades under domain shift. We introduce VLOD-TTA, a test-time adaptation (TTA) framework for VLODs that leverages dense proposal overlap and image-conditioned prompt scores. First, an IoU-weighted entropy objective is proposed that concentrates adaptation on spatially coherent proposal clusters and reduces confirmation bias from isolated boxes. Second, image-conditioned prompt selection is introduced, which ranks prompts by image-level compatibility and fuses the most informative prompts with the detector logits. Our benchmarking across diverse distribution shifts -- including stylized domains, driving scenes, low-light conditions, and common corruptions -- shows the effectiveness of our method on two state-of-the-art VLODs, YOLO-World and Grounding DINO, with consistent improvements over the zero-shot and TTA baselines. Code : https://github.com/imatif17/VLOD-TTA
Abstract:Personalized expression recognition (ER) involves adapting a machine learning model to subject-specific data for improved recognition of expressions with considerable interpersonal variability. Subject-specific ER can benefit significantly from multi-source domain adaptation (MSDA) methods, where each domain corresponds to a specific subject, to improve model accuracy and robustness. Despite promising results, state-of-the-art MSDA approaches often overlook multimodal information or blend sources into a single domain, limiting subject diversity and failing to explicitly capture unique subject-specific characteristics. To address these limitations, we introduce MuSACo, a multi-modal subject-specific selection and adaptation method for ER based on co-training. It leverages complementary information across multiple modalities and multiple source domains for subject-specific adaptation. This makes MuSACo particularly relevant for affective computing applications in digital health, such as patient-specific assessment for stress or pain, where subject-level nuances are crucial. MuSACo selects source subjects relevant to the target and generates pseudo-labels using the dominant modality for class-aware learning, in conjunction with a class-agnostic loss to learn from less confident target samples. Finally, source features from each modality are aligned, while only confident target features are combined. Our experimental results on challenging multimodal ER datasets: BioVid and StressID, show that MuSACo can outperform UDA (blending) and state-of-the-art MSDA methods.
Abstract:Adapting person re-identification (reID) models to new target environments remains a challenging problem that is typically addressed using unsupervised domain adaptation (UDA) methods. Recent works show that when labeled data originates from several distinct sources (e.g., datasets and cameras), considering each source separately and applying multi-source domain adaptation (MSDA) typically yields higher accuracy and robustness compared to blending the sources and performing conventional UDA. However, state-of-the-art MSDA methods learn domain-specific backbone models or require access to source domain data during adaptation, resulting in significant growth in training parameters and computational cost. In this paper, a Source-free Adaptive Gated Experts (SAGE-reID) method is introduced for person reID. Our SAGE-reID is a cost-effective, source-free MSDA method that first trains individual source-specific low-rank adapters (LoRA) through source-free UDA. Next, a lightweight gating network is introduced and trained to dynamically assign optimal merging weights for fusion of LoRA experts, enabling effective cross-domain knowledge transfer. While the number of backbone parameters remains constant across source domains, LoRA experts scale linearly but remain negligible in size (<= 2% of the backbone), reducing both the memory consumption and risk of overfitting. Extensive experiments conducted on three challenging benchmarks: Market-1501, DukeMTMC-reID, and MSMT17 indicate that SAGE-reID outperforms state-of-the-art methods while being computationally efficient.
Abstract:Recognizing complex emotions linked to ambivalence and hesitancy (A/H) can play a critical role in the personalization and effectiveness of digital behaviour change interventions. These subtle and conflicting emotions are manifested by a discord between multiple modalities, such as facial and vocal expressions, and body language. Although experts can be trained to identify A/H, integrating them into digital interventions is costly and less effective. Automatic learning systems provide a cost-effective alternative that can adapt to individual users, and operate seamlessly within real-time, and resource-limited environments. However, there are currently no datasets available for the design of ML models to recognize A/H. This paper introduces a first Behavioural Ambivalence/Hesitancy (BAH) dataset collected for subject-based multimodal recognition of A/H in videos. It contains videos from 224 participants captured across 9 provinces in Canada, with different age, and ethnicity. Through our web platform, we recruited participants to answer 7 questions, some of which were designed to elicit A/H while recording themselves via webcam with microphone. BAH amounts to 1,118 videos for a total duration of 8.26 hours with 1.5 hours of A/H. Our behavioural team annotated timestamp segments to indicate where A/H occurs, and provide frame- and video-level annotations with the A/H cues. Video transcripts and their timestamps are also included, along with cropped and aligned faces in each frame, and a variety of participants meta-data. We include results baselines for BAH at frame- and video-level recognition in multi-modal setups, in addition to zero-shot prediction, and for personalization using unsupervised domain adaptation. The limited performance of baseline models highlights the challenges of recognizing A/H in real-world videos. The data, code, and pretrained weights are available.
Abstract:Person re-identification (ReID) models are known to suffer from camera bias, where learned representations cluster according to camera viewpoints rather than identity, leading to significant performance degradation under (inter-camera) domain shifts in real-world surveillance systems when new cameras are added to camera networks. State-of-the-art test-time adaptation (TTA) methods, largely designed for classification tasks, rely on classification entropy-based objectives that fail to generalize well to ReID, thus making them unsuitable for tackling camera bias. In this paper, we introduce DART$^3$, a TTA framework specifically designed to mitigate camera-induced domain shifts in person ReID. DART$^3$ (Distance-Aware Retrieval Tuning at Test Time) leverages a distance-based objective that aligns better with image retrieval tasks like ReID by exploiting the correlation between nearest-neighbor distance and prediction error. Unlike prior ReID-specific domain adaptation methods, DART$^3$ requires no source data, architectural modifications, or retraining, and can be deployed in both fully black-box and hybrid settings. Empirical evaluations on multiple ReID benchmarks indicate that DART$^3$ and DART$^3$ LITE, a lightweight alternative to the approach, consistently outperforms state-of-the-art TTA baselines, making for a viable option to online learning to mitigate the adverse effects of camera bias.
Abstract:Multimodal learning has shown significant promise for improving medical image analysis by integrating information from complementary data sources. This is widely employed for training vision-language models (VLMs) for cancer detection based on histology images and text reports. However, one of the main limitations in training these VLMs is the requirement for large paired datasets, raising concerns over privacy, and data collection, annotation, and maintenance costs. To address this challenge, we introduce CLIP-IT method to train a vision backbone model to classify histology images by pairing them with privileged textual information from an external source. At first, the modality pairing step relies on a CLIP-based model to match histology images with semantically relevant textual report data from external sources, creating an augmented multimodal dataset without the need for manually paired samples. Then, we propose a multimodal training procedure that distills the knowledge from the paired text modality to the unimodal image classifier for enhanced performance without the need for the textual data during inference. A parameter-efficient fine-tuning method is used to efficiently address the misalignment between the main (image) and paired (text) modalities. During inference, the improved unimodal histology classifier is used, with only minimal additional computational complexity. Our experiments on challenging PCAM, CRC, and BACH histology image datasets show that CLIP-IT can provide a cost-effective approach to leverage privileged textual information and outperform unimodal classifiers for histology.
Abstract:Advances in self-distillation have shown that when knowledge is distilled from a teacher to a student using the same deep learning (DL) architecture, the student performance can surpass the teacher particularly when the network is overparameterized and the teacher is trained with early stopping. Alternatively, ensemble learning also improves performance, although training, storing, and deploying multiple models becomes impractical as the number of models grows. Even distilling an ensemble to a single student model or weight averaging methods first requires training of multiple teacher models and does not fully leverage the inherent stochasticity for generating and distilling diversity in DL models. These constraints are particularly prohibitive in resource-constrained or latency-sensitive applications such as wearable devices. This paper proposes to train only one model and generate multiple diverse teacher representations using distillation-time dropout. However, generating these representations stochastically leads to noisy representations that are misaligned with the learned task. To overcome this problem, a novel stochastic self-distillation (SSD) training strategy is introduced for filtering and weighting teacher representation to distill from task-relevant representations only, using student-guided knowledge distillation (SGKD). The student representation at each distillation step is used as authority to guide the distillation process. Experimental results on real-world affective computing, wearable/biosignal datasets from the UCR Archive, the HAR dataset, and image classification datasets show that the proposed SSD method can outperform state-of-the-art methods without increasing the model size at both training and testing time, and incurs negligible computational complexity compared to state-of-the-art ensemble learning and weight averaging methods.
Abstract:Deep learning has provided considerable advancements for multimedia systems, yet the interpretability of deep models remains a challenge. State-of-the-art post-hoc explainability methods, such as GradCAM, provide visual interpretation based on heatmaps but lack conceptual clarity. Prototype-based approaches, like ProtoPNet and PIPNet, offer a more structured explanation but rely on fixed patches, limiting their robustness and semantic consistency. To address these limitations, a part-prototypical concept mining network (PCMNet) is proposed that dynamically learns interpretable prototypes from meaningful regions. PCMNet clusters prototypes into concept groups, creating semantically grounded explanations without requiring additional annotations. Through a joint process of unsupervised part discovery and concept activation vector extraction, PCMNet effectively captures discriminative concepts and makes interpretable classification decisions. Our extensive experiments comparing PCMNet against state-of-the-art methods on multiple datasets show that it can provide a high level of interpretability, stability, and robustness under clean and occluded scenarios.