Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
We present LLaTTE (LLM-Style Latent Transformers for Temporal Events), a scalable transformer architecture for production ads recommendation. Through systematic experiments, we demonstrate that sequence modeling in recommendation systems follows predictable power-law scaling similar to LLMs. Crucially, we find that semantic features bend the scaling curve: they are a prerequisite for scaling, enabling the model to effectively utilize the capacity of deeper and longer architectures. To realize the benefits of continued scaling under strict latency constraints, we introduce a two-stage architecture that offloads the heavy computation of large, long-context models to an asynchronous upstream user model. We demonstrate that upstream improvements transfer predictably to downstream ranking tasks. Deployed as the largest user model at Meta, this multi-stage framework drives a 4.3\% conversion uplift on Facebook Feed and Reels with minimal serving overhead, establishing a practical blueprint for harnessing scaling laws in industrial recommender systems.
Federated recommendation provides a privacy-preserving solution for training recommender systems without centralizing user interactions. However, existing methods follow an ID-indexed communication paradigm that transmit whole item embeddings between clients and the server, which has three major limitations: 1) consumes uncontrollable communication resources, 2) the uploaded item information cannot generalize to related non-interacted items, and 3) is sensitive to client noisy feedback. To solve these problems, it is necessary to fundamentally change the existing ID-indexed communication paradigm. Therefore, we propose a feature-indexed communication paradigm that transmits feature code embeddings as codebooks rather than raw item embeddings. Building on this paradigm, we present RQFedRec, which assigns each item a list of discrete code IDs via Residual Quantization (RQ)-Kmeans. Each client generates and trains code embeddings as codebooks based on discrete code IDs provided by the server, and the server collects and aggregates these codebooks rather than item embeddings. This design makes communication controllable since the codebooks could cover all items, enabling updates to propagate across related items in same code ID. In addition, since code embedding represents many items, which is more robust to a single noisy item. To jointly capture semantic and collaborative information, RQFedRec further adopts a collaborative-semantic dual-channel aggregation with a curriculum strategy that emphasizes semantic codes early and gradually increases the contribution of collaborative codes over training. Extensive experiments on real-world datasets demonstrate that RQFedRec consistently outperforms state-of-the-art federated recommendation baselines while significantly reducing communication overhead.
Generative Recommendation (GR) has emerged as a transformative paradigm with its end-to-end generation advantages. However, existing GR methods primarily focus on direct Semantic ID (SID) generation from interaction sequences, failing to activate deeper reasoning capabilities analogous to those in large language models and thus limiting performance potential. We identify two critical limitations in current reasoning-enhanced GR approaches: (1) Strict sequential separation between reasoning and generation steps creates imbalanced computational focus across hierarchical SID codes, degrading quality for SID codes; (2) Generated reasoning vectors lack interpretable semantics, while reasoning paths suffer from unverifiable supervision. In this paper, we propose stepwise semantic-guided reasoning in latent space (S$^2$GR), a novel reasoning enhanced GR framework. First, we establish a robust semantic foundation via codebook optimization, integrating item co-occurrence relationship to capture behavioral patterns, and load balancing and uniformity objectives that maximize codebook utilization while reinforcing coarse-to-fine semantic hierarchies. Our core innovation introduces the stepwise reasoning mechanism inserting thinking tokens before each SID generation step, where each token explicitly represents coarse-grained semantics supervised via contrastive learning against ground-truth codebook cluster distributions ensuring physically grounded reasoning paths and balanced computational focus across all SID codes. Extensive experiments demonstrate the superiority of S$^2$GR, and online A/B test confirms efficacy on large-scale industrial short video platform.
Modeling long-term user behavior trajectories is essential for understanding evolving preferences and enabling proactive recommendations. However, most sequential recommenders focus on next-item prediction, overlooking dependencies across multiple future actions. We propose Generative Chain of Behavior (GCB), a generative framework that models user interactions as an autoregressive chain of semantic behaviors over multiple future steps. GCB first encodes items into semantic IDs via RQ-VAE with k-means refinement, forming a discrete latent space that preserves semantic proximity. On top of this space, a transformer-based autoregressive generator predicts multi-step future behaviors conditioned on user history, capturing long-horizon intent transitions and generating coherent trajectories. Experiments on benchmark datasets show that GCB consistently outperforms state-of-the-art sequential recommenders in multi-step accuracy and trajectory consistency. Beyond these gains, GCB offers a unified generative formulation for capturing user preference evolution.
Large language models (LLMs) are increasingly applied to ranking tasks in retrieval and recommendation. Although reasoning prompting can enhance ranking utility, our preliminary exploration reveals that its benefits are inconsistent and come at a substantial computational cost, suggesting that when to reason is as crucial as how to reason. To address this issue, we propose a reasoning routing framework that employs a lightweight, plug-and-play router head to decide whether to use direct inference (Non-Think) or reasoning (Think) for each instance before generation. The router head relies solely on pre-generation signals: i) compact ranking-aware features (e.g., candidate dispersion) and ii) model-aware difficulty signals derived from a diagnostic checklist reflecting the model's estimated need for reasoning. By leveraging these features before generation, the router outputs a controllable token that determines whether to apply the Think mode. Furthermore, the router can adaptively select its operating policy along the validation Pareto frontier during deployment, enabling dynamic allocation of computational resources toward instances most likely to benefit from Think under varying system constraints. Experiments on three public ranking datasets with different scales of open-source LLMs show consistent improvements in ranking utility with reduced token consumption (e.g., +6.3\% NDCG@10 with -49.5\% tokens on MovieLens with Qwen3-4B), demonstrating reasoning routing as a practical solution to the accuracy-efficiency trade-off.
In social recommenders, the inherent nonlinearity and opacity of synergistic effects across multiple social networks hinders users from understanding how diverse information is leveraged for recommendations, consequently diminishing explainability. However, existing explainers can only identify the topological information in social networks that significantly influences recommendations, failing to further explain the synergistic effects among this information. Inspired by existing findings that synergistic effects enhance mutual information between inputs and predictions to generate information gain, we extend this discovery to graph data. We quantify graph information gain to identify subgraphs embodying synergistic effects. Based on the theoretical insights, we propose SemExplainer, which explains synergistic effects by identifying subgraphs that embody them. SemExplainer first extracts explanatory subgraphs from multi-view social networks to generate preliminary importance explanations for recommendations. A conditional entropy optimization strategy to maximize information gain is developed, thereby further identifying subgraphs that embody synergistic effects from explanatory subgraphs. Finally, SemExplainer searches for paths from users to recommended items within the synergistic subgraphs to generate explanations for the recommendations. Extensive experiments on three datasets demonstrate the superiority of SemExplainer over baseline methods, providing superior explanations of synergistic effects.
With the advancement of machine learning and artificial intelligence technologies, recommender systems have been increasingly used across a vast variety of platforms to efficiently and effectively match users with items. As application contexts become more diverse and complex, there is a growing need for more sophisticated recommendation techniques. One example is the composite item (for example, fashion outfit) recommendation where multiple levels of user preference information might be available and relevant. In this study, we propose JIMA, a joint interaction modeling approach that uses a single model to take advantage of all data from different levels of granularity and incorporate interactions to learn the complex relationships among lower-order (atomic item) and higher-order (composite item) user preferences as well as domain expertise (e.g., on the stylistic fit). We comprehensively evaluate the proposed method and compare it with advanced baselines through multiple simulation studies as well as with real data in both offline and online settings. The results consistently demonstrate the superior performance of the proposed approach.
Personalization of LLMs by sociodemographic subgroup often improves user experience, but can also introduce or amplify biases and unfair outcomes across groups. Prior work has employed so-called personas, sociodemographic user attributes conveyed to a model, to study bias in LLMs by relying on a single cue to prompt a persona, such as user names or explicit attribute mentions. This disregards LLM sensitivity to prompt variations (robustness) and the rarity of some cues in real interactions (external validity). We compare six commonly used persona cues across seven open and proprietary LLMs on four writing and advice tasks. While cues are overall highly correlated, they produce substantial variance in responses across personas. We therefore caution against claims from a single persona cue and recommend future personalization research to evaluate multiple externally valid cues.
Demographic probing is widely used to study how large language models (LLMs) adapt their behavior to signaled demographic attributes. This approach typically uses a single demographic cue in isolation (e.g., a name or dialect) as a signal for group membership, implicitly assuming strong construct validity: that such cues are interchangeable operationalizations of the same underlying, demographically conditioned behavior. We test this assumption in realistic advice-seeking interactions, focusing on race and gender in a U.S. context. We find that cues intended to represent the same demographic group induce only partially overlapping changes in model behavior, while differentiation between groups within a given cue is weak and uneven. Consequently, estimated disparities are unstable, with both magnitude and direction varying across cues. We further show that these inconsistencies partly arise from variation in how strongly cues encode demographic attributes and from linguistic confounders that independently shape model behavior. Together, our findings suggest that demographic probing lacks construct validity: it does not yield a single, stable characterization of how LLMs condition on demographic information, which may reflect a misspecified or fragmented construct. We conclude by recommending the use of multiple, ecologically valid cues and explicit control of confounders to support more defensible claims about demographic effects in LLMs.
Large Language Models (LLMs) have demonstrated strong potential for generative recommendation by leveraging rich semantic knowledge. However, existing LLM-based recommender systems struggle to effectively incorporate collaborative filtering (CF) signals, due to a fundamental mismatch between item-level preference modeling in CF and token-level next-token prediction (NTP) optimization in LLMs. Prior approaches typically treat CF as contextual hints or representation bias, and resort to multi-stage training to reduce behavioral semantic space discrepancies, leaving CF unable to explicitly regulate LLM generation. In this work, we propose Token-level Collaborative Alignment for Recommendation (TCA4Rec), a model-agnostic and plug-and-play framework that establishes an explicit optimization-level interface between CF supervision and LLM generation. TCA4Rec consists of (i) Collaborative Tokenizer, which projects raw item-level CF logits into token-level distributions aligned with the LLM token space, and (ii) Soft Label Alignment, which integrates these CF-informed distributions with one-hot supervision to optimize a soft NTP objective. This design preserves the generative nature of LLM training while enabling collaborative alignment with essential user preference of CF models. We highlight TCA4Rec is compatible with arbitrary traditional CF models and generalizes across a wide range of decoder-based LLM recommender architectures. Moreover, it provides an explicit mechanism to balance behavioral alignment and semantic fluency, yielding generative recommendations that are both accurate and controllable. Extensive experiments demonstrate that TCA4Rec consistently improves recommendation performance across a broad spectrum of CF models and LLM-based recommender systems.