Abstract:Integrating product catalogs and user behavior into LLMs can enhance recommendations with broad world knowledge, but the scale of real-world item catalogs, often containing millions of discrete item identifiers (Item IDs), poses a significant challenge. This contrasts with the smaller, tokenized text vocabularies typically used in LLMs. The predominant view within the LLM-based recommendation literature is that it is infeasible to treat item ids as a first class citizen in the LLM and instead some sort of tokenization of an item into multiple tokens is required. However, this creates a key practical bottleneck in serving these models for real-time low-latency applications. Our paper challenges this predominant practice and integrates item ids as first class citizens into the LLM. We provide simple, yet highly effective, novel training and inference modifications that enable single-token representations of items and single-step decoding. Our method shows improvements in recommendation quality (Recall and NDCG) over existing techniques on the Amazon shopping datasets while significantly improving inference efficiency by 5x-14x. Our work offers an efficiency perspective distinct from that of other popular approaches within LLM-based recommendation, potentially inspiring further research and opening up a new direction for integrating IDs into LLMs. Our code is available here https://drive.google.com/file/d/1cUMj37rV0Z1bCWMdhQ6i4q4eTRQLURtC
Abstract:In recommendation systems, there has been a growth in the num-ber of recommendable items (# of movies, music, products). Whenthe set of recommendable items is large, training and evaluationof item recommendation models becomes computationally expen-sive. To lower this cost, it has become common to sample negativeitems. However, the recommendation quality can suffer from biasesintroduced by traditional negative sampling mechanisms.In this work, we demonstrate the benefits from correcting thebias introduced by sampling of negatives. We first provide sampledbatch version of the well-studied WARP and LambdaRank methods.Then, we present how these methods can benefit from improvedranking estimates. Finally, we evaluate the recommendation qualityas a result of correcting rank estimates and demonstrate that WARPand LambdaRank can be learned efficiently with negative samplingand our proposed correction technique.
Abstract:Large-language Models (LLMs) have been extremely successful at tasks like complex dialogue understanding, reasoning and coding due to their emergent abilities. These emergent abilities have been extended with multi-modality to include image, audio, and video capabilities. Recommender systems, on the other hand, have been critical for information seeking and item discovery needs. Recently, there have been attempts to apply LLMs for recommendations. One difficulty of current attempts is that the underlying LLM is usually not trained on the recommender system data, which largely contains user interaction signals and is often not publicly available. Another difficulty is user interaction signals often have a different pattern from natural language text, and it is currently unclear if the LLM training setup can learn more non-trivial knowledge from interaction signals compared with traditional recommender system methods. Finally, it is difficult to train multiple LLMs for different use-cases, and to retain the original language and reasoning abilities when learning from recommender system data. To address these three limitations, we propose an Item-Language Model (ILM), which is composed of an item encoder to produce text-aligned item representations that encode user interaction signals, and a frozen LLM that can understand those item representations with preserved pretrained knowledge. We conduct extensive experiments which demonstrate both the importance of the language-alignment and of user interaction knowledge in the item encoder.