Abstract:As Natural Language Processing (NLP) models continue to evolve and become integral to high-stakes applications, ensuring their interpretability remains a critical challenge. Given the growing variety of explainability methods and diverse stakeholder requirements, frameworks that help stakeholders select appropriate explanations tailored to their specific use cases are increasingly important. To address this need, we introduce EvalxNLP, a Python framework for benchmarking state-of-the-art feature attribution methods for transformer-based NLP models. EvalxNLP integrates eight widely recognized explainability techniques from the Explainable AI (XAI) literature, enabling users to generate and evaluate explanations based on key properties such as faithfulness, plausibility, and complexity. Our framework also provides interactive, LLM-based textual explanations, facilitating user understanding of the generated explanations and evaluation outcomes. Human evaluation results indicate high user satisfaction with EvalxNLP, suggesting it is a promising framework for benchmarking explanation methods across diverse user groups. By offering a user-friendly and extensible platform, EvalxNLP aims at democratizing explainability tools and supporting the systematic comparison and advancement of XAI techniques in NLP.
Abstract:While research on applications and evaluations of explanation methods continues to expand, fairness of the explanation methods concerning disparities in their performance across subgroups remains an often overlooked aspect. In this paper, we address this gap by showing that, across three tasks and five language models, widely used post-hoc feature attribution methods exhibit significant gender disparity with respect to their faithfulness, robustness, and complexity. These disparities persist even when the models are pre-trained or fine-tuned on particularly unbiased datasets, indicating that the disparities we observe are not merely consequences of biased training data. Our results highlight the importance of addressing disparities in explanations when developing and applying explainability methods, as these can lead to biased outcomes against certain subgroups, with particularly critical implications in high-stakes contexts. Furthermore, our findings underscore the importance of incorporating the fairness of explanations, alongside overall model fairness and explainability, as a requirement in regulatory frameworks.
Abstract:While recent advancements in the capabilities and widespread accessibility of generative language models, such as ChatGPT (OpenAI, 2022), have brought about various benefits by generating fluent human-like text, the task of distinguishing between human- and large language model (LLM) generated text has emerged as a crucial problem. These models can potentially deceive by generating artificial text that appears to be human-generated. This issue is particularly significant in domains such as law, education, and science, where ensuring the integrity of text is of the utmost importance. This survey provides an overview of the current approaches employed to differentiate between texts generated by humans and ChatGPT. We present an account of the different datasets constructed for detecting ChatGPT-generated text, the various methods utilized, what qualitative analyses into the characteristics of human versus ChatGPT-generated text have been performed, and finally, summarize our findings into general insights