Abstract:To build fair AI systems we need to understand how social-group biases intrinsic to foundational encoder-based vision-language models (VLMs) manifest in biases in downstream tasks. In this study, we demonstrate that intrinsic biases in VLM representations systematically ``carry over'' or propagate into zero-shot retrieval tasks, revealing how deeply rooted biases shape a model's outputs. We introduce a controlled framework to measure this propagation by correlating (a) intrinsic measures of bias in the representational space with (b) extrinsic measures of bias in zero-shot text-to-image (TTI) and image-to-text (ITT) retrieval. Results show substantial correlations between intrinsic and extrinsic bias, with an average $\rho$ = 0.83 $\pm$ 0.10. This pattern is consistent across 114 analyses, both retrieval directions, six social groups, and three distinct VLMs. Notably, we find that larger/better-performing models exhibit greater bias propagation, a finding that raises concerns given the trend towards increasingly complex AI models. Our framework introduces baseline evaluation tasks to measure the propagation of group and valence signals. Investigations reveal that underrepresented groups experience less robust propagation, further skewing their model-related outcomes.
Abstract:While bias in large language models (LLMs) is well-studied, similar concerns in vision-language models (VLMs) have received comparatively less attention. Existing VLM bias studies often focus on portrait-style images and gender-occupation associations, overlooking broader and more complex social stereotypes and their implied harm. This work introduces VIGNETTE, a large-scale VQA benchmark with 30M+ images for evaluating bias in VLMs through a question-answering framework spanning four directions: factuality, perception, stereotyping, and decision making. Beyond narrowly-centered studies, we assess how VLMs interpret identities in contextualized settings, revealing how models make trait and capability assumptions and exhibit patterns of discrimination. Drawing from social psychology, we examine how VLMs connect visual identity cues to trait and role-based inferences, encoding social hierarchies, through biased selections. Our findings uncover subtle, multifaceted, and surprising stereotypical patterns, offering insights into how VLMs construct social meaning from inputs.
Abstract:When a student fails an exam, do we tend to blame their effort or the test's difficulty? Attribution, defined as how reasons are assigned to event outcomes, shapes perceptions, reinforces stereotypes, and influences decisions. Attribution Theory in social psychology explains how humans assign responsibility for events using implicit cognition, attributing causes to internal (e.g., effort, ability) or external (e.g., task difficulty, luck) factors. LLMs' attribution of event outcomes based on demographics carries important fairness implications. Most works exploring social biases in LLMs focus on surface-level associations or isolated stereotypes. This work proposes a cognitively grounded bias evaluation framework to identify how models' reasoning disparities channelize biases toward demographic groups.
Abstract:While recent work has found that vision-language models trained under the Contrastive Language Image Pre-training (CLIP) framework contain intrinsic social biases, the extent to which different upstream pre-training features of the framework relate to these biases, and hence how intrinsic bias and downstream performance are connected has been unclear. In this work, we present the largest comprehensive analysis to-date of how the upstream pre-training factors and downstream performance of CLIP models relate to their intrinsic biases. Studying 131 unique CLIP models, trained on 26 datasets, using 55 architectures, and in a variety of sizes, we evaluate bias in each model using 26 well-established unimodal and cross-modal principled Embedding Association Tests. We find that the choice of pre-training dataset is the most significant upstream predictor of bias, whereas architectural variations have minimal impact. Additionally, datasets curated using sophisticated filtering techniques aimed at enhancing downstream model performance tend to be associated with higher levels of intrinsic bias. Finally, we observe that intrinsic bias is often significantly correlated with downstream performance ($0.3 \leq r \leq 0.8$), suggesting that models optimized for performance inadvertently learn to amplify representational biases. Comparisons between unimodal and cross-modal association tests reveal that social group bias depends heavily on the modality. Our findings imply that more sophisticated strategies are needed to address intrinsic model bias for vision-language models across the entire model development pipeline.
Abstract:This study introduces a taxonomy of stereotype content in contemporary large language models (LLMs). We prompt ChatGPT 3.5, Llama 3, and Mixtral 8x7B, three powerful and widely used LLMs, for the characteristics associated with 87 social categories (e.g., gender, race, occupations). We identify 14 stereotype dimensions (e.g., Morality, Ability, Health, Beliefs, Emotions), accounting for ~90% of LLM stereotype associations. Warmth and Competence facets were the most frequent content, but all other dimensions were significantly prevalent. Stereotypes were more positive in LLMs (vs. humans), but there was significant variability across categories and dimensions. Finally, the taxonomy predicted the LLMs' internal evaluations of social categories (e.g., how positively/negatively the categories were represented), supporting the relevance of a multidimensional taxonomy for characterizing LLM stereotypes. Our findings suggest that high-dimensional human stereotypes are reflected in LLMs and must be considered in AI auditing and debiasing to minimize unidentified harms from reliance in low-dimensional views of bias in LLMs.
Abstract:Artificial intelligence (AI) hiring tools have revolutionized resume screening, and large language models (LLMs) have the potential to do the same. However, given the biases which are embedded within LLMs, it is unclear whether they can be used in this scenario without disadvantaging groups based on their protected attributes. In this work, we investigate the possibilities of using LLMs in a resume screening setting via a document retrieval framework that simulates job candidate selection. Using that framework, we then perform a resume audit study to determine whether a selection of Massive Text Embedding (MTE) models are biased in resume screening scenarios. We simulate this for nine occupations, using a collection of over 500 publicly available resumes and 500 job descriptions. We find that the MTEs are biased, significantly favoring White-associated names in 85.1\% of cases and female-associated names in only 11.1\% of cases, with a minority of cases showing no statistically significant differences. Further analyses show that Black males are disadvantaged in up to 100\% of cases, replicating real-world patterns of bias in employment settings, and validate three hypotheses of intersectionality. We also find an impact of document length as well as the corpus frequency of names in the selection of resumes. These findings have implications for widely used AI tools that are automating employment, fairness, and tech policy.
Abstract:Our research investigates the impact of Generative Artificial Intelligence (GAI) models, specifically text-to-image generators (T2Is), on the representation of non-Western cultures, with a focus on Indian contexts. Despite the transformative potential of T2Is in content creation, concerns have arisen regarding biases that may lead to misrepresentations and marginalizations. Through a community-centered approach and grounded theory analysis of 5 focus groups from diverse Indian subcultures, we explore how T2I outputs to English prompts depict Indian culture and its subcultures, uncovering novel representational harms such as exoticism and cultural misappropriation. These findings highlight the urgent need for inclusive and culturally sensitive T2I systems. We propose design guidelines informed by a sociotechnical perspective, aiming to address these issues and contribute to the development of more equitable and representative GAI technologies globally. Our work also underscores the necessity of adopting a community-centered approach to comprehend the sociotechnical dynamics of these models, complementing existing work in this space while identifying and addressing the potential negative repercussions and harms that may arise when these models are deployed on a global scale.
Abstract:Existing works examining Vision Language Models (VLMs) for social biases predominantly focus on a limited set of documented bias associations, such as gender:profession or race:crime. This narrow scope often overlooks a vast range of unexamined implicit associations, restricting the identification and, hence, mitigation of such biases. We address this gap by probing VLMs to (1) uncover hidden, implicit associations across 9 bias dimensions. We systematically explore diverse input and output modalities and (2) demonstrate how biased associations vary in their negativity, toxicity, and extremity. Our work (3) identifies subtle and extreme biases that are typically not recognized by existing methodologies. We make the Dataset of retrieved associations, (Dora), publicly available here https://github.com/chahatraj/BiasDora.
Abstract:Large Language Models (LLMs) perpetuate social biases, reflecting prejudices in their training data and reinforcing societal stereotypes and inequalities. Our work explores the potential of the Contact Hypothesis, a concept from social psychology for debiasing LLMs. We simulate various forms of social contact through LLM prompting to measure their influence on the model's biases, mirroring how intergroup interactions can reduce prejudices in social contexts. We create a dataset of 108,000 prompts following a principled approach replicating social contact to measure biases in three LLMs (LLaMA 2, Tulu, and NousHermes) across 13 social bias dimensions. We propose a unique debiasing technique, Social Contact Debiasing (SCD), that instruction-tunes these models with unbiased responses to prompts. Our research demonstrates that LLM responses exhibit social biases when subject to contact probing, but more importantly, these biases can be significantly reduced by up to 40% in 1 epoch of instruction tuning LLaMA 2 following our SCD strategy. Our code and data are available at https://github.com/chahatraj/breakingbias.
Abstract:How good a research scientist is ChatGPT? We systematically probed the capabilities of GPT-3.5 and GPT-4 across four central components of the scientific process: as a Research Librarian, Research Ethicist, Data Generator, and Novel Data Predictor, using psychological science as a testing field. In Study 1 (Research Librarian), unlike human researchers, GPT-3.5 and GPT-4 hallucinated, authoritatively generating fictional references 36.0% and 5.4% of the time, respectively, although GPT-4 exhibited an evolving capacity to acknowledge its fictions. In Study 2 (Research Ethicist), GPT-4 (though not GPT-3.5) proved capable of detecting violations like p-hacking in fictional research protocols, correcting 88.6% of blatantly presented issues, and 72.6% of subtly presented issues. In Study 3 (Data Generator), both models consistently replicated patterns of cultural bias previously discovered in large language corpora, indicating that ChatGPT can simulate known results, an antecedent to usefulness for both data generation and skills like hypothesis generation. Contrastingly, in Study 4 (Novel Data Predictor), neither model was successful at predicting new results absent in their training data, and neither appeared to leverage substantially new information when predicting more versus less novel outcomes. Together, these results suggest that GPT is a flawed but rapidly improving librarian, a decent research ethicist already, capable of data generation in simple domains with known characteristics but poor at predicting novel patterns of empirical data to aid future experimentation.