Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Item-to-Item (I2I) recommendation models are widely used in real-world systems due to their scalability, real-time capabilities, and high recommendation quality. Research to enhance I2I performance focuses on two directions: 1) model-centric approaches, which adopt deeper architectures but risk increased computational costs and deployment complexity, and 2) data-centric methods, which refine training data without altering models, offering cost-effectiveness but struggling with data sparsity and noise. To address these challenges, we propose LLM-I2I, a data-centric framework leveraging Large Language Models (LLMs) to mitigate data quality issues. LLM-I2I includes (1) an LLM-based generator that synthesizes user-item interactions for long-tail items, alleviating data sparsity, and (2) an LLM-based discriminator that filters noisy interactions from real and synthetic data. The refined data is then fused to train I2I models. Evaluated on industry (AEDS) and academic (ARD) datasets, LLM-I2I consistently improves recommendation accuracy, particularly for long-tail items. Deployed on a large-scale cross-border e-commerce platform, it boosts recall number (RN) by 6.02% and gross merchandise value (GMV) by 1.22% over existing I2I models. This work highlights the potential of LLMs in enhancing data-centric recommendation systems without modifying model architectures.
In modern digital marketing, the growing complexity of advertisement data demands intelligent systems capable of understanding semantic relationships among products, audiences, and advertising content. To address this challenge, this paper proposes a Knowledge Graph and Deep Learning-Based Semantic Recommendation Database System (KGSR-ADS) for advertisement retrieval and personalization. The proposed framework integrates a heterogeneous Ad-Knowledge Graph (Ad-KG) that captures multi-relational semantics, a Semantic Embedding Layer that leverages large language models (LLMs) such as GPT and LLaMA to generate context-aware vector representations, a GNN + Attention Model that infers cross-entity dependencies, and a Database Optimization & Retrieval Layer based on vector indexing (FAISS/Milvus) for efficient semantic search. This layered architecture enables both accurate semantic matching and scalable retrieval, allowing personalized ad recommendations under large-scale heterogeneous workloads.




Large language models provide rich semantic priors and strong reasoning capabilities, making them promising auxiliary signals for recommendation. However, prevailing approaches either deploy LLMs as standalone recommender or apply global knowledge distillation, both of which suffer from inherent drawbacks. Standalone LLM recommender are costly, biased, and unreliable across large regions of the user item space, while global distillation forces the downstream model to imitate LLM predictions even when such guidance is inaccurate. Meanwhile, recent studies show that LLMs excel particularly in re-ranking and challenging scenarios, rather than uniformly across all contexts.We introduce Selective LLM Guided Regularization, a model-agnostic and computation efficient framework that activates LLM based pairwise ranking supervision only when a trainable gating mechanism informing by user history length, item popularity, and model uncertainty predicts the LLM to be reliable. All LLM scoring is performed offline, transferring knowledge without increasing inference cost. Experiments across multiple datasets show that this selective strategy consistently improves overall accuracy and yields substantial gains in cold start and long tail regimes, outperforming global distillation baselines.
Diversified recommendation has attracted increasing attention from both researchers and practitioners, which can effectively address the homogeneity of recommended items. Existing approaches predominantly aim to infer the diversity of user preferences from observed user feedback. Nonetheless, due to inherent data biases, the observed data may not fully reflect user interests, where underexplored preferences can be overwhelmed or remain unmanifested. Failing to capture these preferences can lead to suboptimal diversity in recommendations. To fill this gap, this work aims to study diversified recommendation from a data-bias perspective. Inspired by the outstanding performance of large language models (LLMs) in zero-shot inference leveraging world knowledge, we propose a novel approach that utilizes LLMs' expertise to uncover underexplored user preferences from observed behavior, ultimately providing diverse and relevant recommendations. To achieve this, we first introduce Tree of Preferences (ToP), an innovative structure constructed to model user preferences from coarse to fine. ToP enables LLMs to systematically reason over the user's rationale behind their behavior, thereby uncovering their underexplored preferences. To guide diversified recommendations using uncovered preferences, we adopt a data-centric approach, identifying candidate items that match user preferences and generating synthetic interactions that reflect underexplored preferences. These interactions are integrated to train a general recommender for diversification. Moreover, we scale up overall efficiency by dynamically selecting influential users during optimization. Extensive evaluations of both diversity and relevance show that our approach outperforms existing methods in most cases and achieves near-optimal performance in others, with reasonable inference latency.
Accurate book genre classification is fundamental to digital library organization, content discovery, and personalized recommendation. Existing approaches typically model genre prediction as a flat, single-label task, ignoring hierarchical genre structure and relying heavily on noisy, subjective user reviews, which often degrade classification reliability. We propose HiGeMine, a two-phase hierarchical genre mining framework that robustly integrates user reviews with authoritative book blurbs. In the first phase, HiGeMine employs a zero-shot semantic alignment strategy to filter reviews, retaining only those semantically consistent with the corresponding blurb, thereby mitigating noise, bias, and irrelevance. In the second phase, we introduce a dual-path, two-level graph-based classification architecture: a coarse-grained Level-1 binary classifier distinguishes fiction from non-fiction, followed by Level-2 multi-label classifiers for fine-grained genre prediction. Inter-genre dependencies are explicitly modeled using a label co-occurrence graph, while contextual representations are derived from pretrained language models applied to the filtered textual content. To facilitate systematic evaluation, we curate a new hierarchical book genre dataset. Extensive experiments demonstrate that HiGeMine consistently outperformed strong baselines across hierarchical genre classification tasks. The proposed framework offers a principled and effective solution for leveraging both structured and unstructured textual data in hierarchical book genre analysis.



The application of agentic AI systems in autonomous decision-making is growing in the areas of healthcare, smart cities, digital forensics, and supply chain management. Even though these systems are flexible and offer real-time reasoning, they also raise concerns of trust and oversight, and integrity of the information and activities upon which they are founded. The paper suggests a single architecture model comprising of LangChain-based multi-agent system with a permissioned blockchain to guarantee constant monitoring, policy enforcement, and immutable auditability of agentic action. The framework relates the perception conceptualization-action cycle to a blockchain layer of governance that verifies the inputs, evaluates recommended actions, and documents the outcomes of the execution. A Hyperledger Fabric-based system, action executors MCP-integrated, and LangChain agent are introduced and experiments of smart inventory management, traffic-signal control, and healthcare monitoring are done. The results suggest that blockchain-security verification is efficient in preventing unauthorized practices, offers traceability throughout the whole decision-making process, and maintains operational latency within reasonable ranges. The suggested framework provides a universal system of implementing high-impact agentic AI applications that are autonomous yet responsible.




Recent advancements in Multimodal Large Language Models (MLLMs) have demonstrated significant potential in recommendation systems. However, the effective application of MLLMs to multimodal sequential recommendation remains unexplored: A) Existing methods primarily leverage the multimodal semantic understanding capabilities of pre-trained MLLMs to generate item embeddings or semantic IDs, thereby enhancing traditional recommendation models. These approaches generate item representations that exhibit limited interpretability, and pose challenges when transferring to language model-based recommendation systems. B) Other approaches convert user behavior sequence into image-text pairs and perform recommendation through multiple MLLM inference, incurring prohibitive computational and time costs. C) Current MLLM-based recommendation systems generally neglect the integration of collaborative signals. To address these limitations while balancing recommendation performance, interpretability, and computational cost, this paper proposes MultiModal Summarization-and-Retrieval-Augmented Sequential Recommendation. Specifically, we first employ MLLM to summarize items into concise keywords and fine-tune the model using rewards that incorporate summary length, information loss, and reconstruction difficulty, thereby enabling adaptive adjustment of the summarization policy. Inspired by retrieval-augmented generation, we then transform collaborative signals into corresponding keywords and integrate them as supplementary context. Finally, we apply supervised fine-tuning with multi-task learning to align the MLLM with the multimodal sequential recommendation. Extensive evaluations on common recommendation datasets demonstrate the effectiveness of MMSRARec, showcasing its capability to efficiently and interpretably understand user behavior histories and item information for accurate recommendations.
In real-world recommender systems, user-item interactions are Missing Not At Random (MNAR), as interactions with popular items are more frequently observed than those with less popular ones. Missing observations shift recommendations toward frequently interacted items, which reduces the diversity of the recommendation list. To alleviate this problem, Inverse Propensity Scoring (IPS) is widely used and commonly models propensities based on a power-law function of item interaction frequency. However, we found that such power-law-based correction overly penalizes popular items and harms their recommendation performance. We address this issue by redefining the propensity score to allow broader item recommendation without excessively penalizing popular items. The proposed score is formulated by applying a sigmoid function to the logarithm of the item observation frequency, maintaining the simplicity of power-law scoring while allowing for more flexible adjustment. Furthermore, we incorporate the redefined propensity score into a linear autoencoder model, which tends to favor popular items, and evaluate its effectiveness. Experimental results revealed that our method substantially improves the diversity of items in the recommendation list without sacrificing recommendation accuracy.




Popularity bias fundamentally undermines the personalization capabilities of collaborative filtering (CF) models, causing them to disproportionately recommend popular items while neglecting users' genuine preferences for niche content. While existing approaches treat this as an external confounding factor, we reveal that popularity bias is an intrinsic geometric artifact of Bayesian Pairwise Ranking (BPR) optimization in CF models. Through rigorous mathematical analysis, we prove that BPR systematically organizes item embeddings along a dominant "popularity direction" where embedding magnitudes directly correlate with interaction frequency. This geometric distortion forces user embeddings to simultaneously handle two conflicting tasks-expressing genuine preference and calibrating against global popularity-trapping them in suboptimal configurations that favor popular items regardless of individual tastes. We propose Directional Decomposition and Correction (DDC), a universally applicable framework that surgically corrects this embedding geometry through asymmetric directional updates. DDC guides positive interactions along personalized preference directions while steering negative interactions away from the global popularity direction, disentangling preference from popularity at the geometric source. Extensive experiments across multiple BPR-based architectures demonstrate that DDC significantly outperforms state-of-the-art debiasing methods, reducing training loss to less than 5% of heavily-tuned baselines while achieving superior recommendation quality and fairness. Code is available in https://github.com/LingFeng-Liu-AI/DDC.



The rapid development of deepfake technology powered by AI has raised global concerns regarding the manipulation of information, the usurpation of digital identities, and the erosion of public trust in the authenticity of online content. These challenges extend beyond technical issues and involve complex moral dimensions, rendering conventional, technologically driven, and reactive management approaches insufficient to address underlying causes such as intent, ethical responsibility, and intangible social harm. In response to these challenges, this study aims to formulate a comprehensive Islamic ethical framework as a preventive approach to mitigate the misuse of deepfake technology. This study employed a Systematic Literature Review (SLR) guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), selecting ten primary sources published between 2018 and 2025 to identify ethical gaps, regulatory needs, and appropriate normative solutions. The analysis demonstrates that integrating the principles of Maqasid al-Shariah, particularly hifz al-ird and hifz al-nafs, provides a strong normative foundation for governing the responsible use of digital technology. Based on the findings, this study proposes three strategic recommendations: regulatory reforms that recognize the intangible and psychological harms resulting from reputational damage; strengthened technology governance grounded in moral accountability and the values of adl, amanah, and transparency; and enhanced public digital literacy based on the principle of tabayyun. Overall, the findings suggest that the application of Islamic ethical principles shifts governance paradigms from punitive mechanisms toward preventive approaches that emphasize the protection of human dignity, the prevention of harm, and the promotion of the common good in the digital age.