Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Recent advances in pretrained language models (PLMs) have significantly improved conversational recommender systems (CRS), enabling more fluent and context-aware interactions. To further enhance accuracy and mitigate hallucination, many methods integrate PLMs with knowledge graphs (KGs), but face key challenges: failing to fully exploit PLM reasoning over graph relationships, indiscriminately incorporating retrieved knowledge without context filtering, and neglecting collaborative preferences in multi-turn dialogues. To this end, we propose PCRS-TKA, a prompt-based framework employing retrieval-augmented generation to integrate PLMs with KGs. PCRS-TKA constructs dialogue-specific knowledge trees from KGs and serializes them into texts, enabling structure-aware reasoning while capturing rich entity semantics. Our approach selectively filters context-relevant knowledge and explicitly models collaborative preferences using specialized supervision signals. A semantic alignment module harmonizes heterogeneous inputs, reducing noise and enhancing accuracy. Extensive experiments demonstrate that PCRS-TKA consistently outperforms all baselines in both recommendation and conversational quality.
Dynamic graph learning plays a pivotal role in modeling evolving relationships over time, especially for temporal link prediction tasks in domains such as traffic systems, social networks, and recommendation platforms. While Transformer-based models have demonstrated strong performance by capturing long-range temporal dependencies, their reliance on self-attention results in quadratic complexity with respect to sequence length, limiting scalability on high-frequency or large-scale graphs. In this work, we revisit the necessity of self-attention in dynamic graph modeling. Inspired by recent findings that attribute the success of Transformers more to their architectural design than attention itself, we propose GLFormer, a novel attention-free Transformer-style framework for dynamic graphs. GLFormer introduces an adaptive token mixer that performs context-aware local aggregation based on interaction order and time intervals. To capture long-term dependencies, we further design a hierarchical aggregation module that expands the temporal receptive field by stacking local token mixers across layers. Experiments on six widely-used dynamic graph benchmarks show that GLFormer achieves SOTA performance, which reveals that attention-free architectures can match or surpass Transformer baselines in dynamic graph settings with significantly improved efficiency.
Cross-domain recommendation (CDR) is crucial for improving recommendation accuracy and generalization, yet traditional methods are often hindered by the reliance on shared user/item IDs, which are unavailable in most real-world scenarios. Consequently, many efforts have focused on learning disentangled representations through multi-domain joint training to bridge the domain gaps. Recent Large Language Model (LLM)-based approaches show promise, they still face critical challenges, including: (1) the \textbf{item ID tokenization dilemma}, which leads to vocabulary explosion and fails to capture high-order collaborative knowledge; and (2) \textbf{insufficient domain-specific modeling} for the complex evolution of user interests and item semantics. To address these limitations, we propose \textbf{GenCDR}, a novel \textbf{Gen}erative \textbf{C}ross-\textbf{D}omain \textbf{R}ecommendation framework. GenCDR first employs a \textbf{Domain-adaptive Tokenization} module, which generates disentangled semantic IDs for items by dynamically routing between a universal encoder and domain-specific adapters. Symmetrically, a \textbf{Cross-domain Autoregressive Recommendation} module models user preferences by fusing universal and domain-specific interests. Finally, a \textbf{Domain-aware Prefix-tree} enables efficient and accurate generation. Extensive experiments on multiple real-world datasets demonstrate that GenCDR significantly outperforms state-of-the-art baselines. Our code is available in the supplementary materials.
Optimizing recommender systems for objectives beyond accuracy, such as diversity, novelty, and personalization, is crucial for long-term user satisfaction. To this end, industrial practitioners have accumulated vast amounts of structured domain knowledge, which we term human priors (e.g., item taxonomies, temporal patterns). This knowledge is typically applied through post-hoc adjustments during ranking or post-ranking. However, this approach remains decoupled from the core model learning, which is particularly undesirable as the industry shifts to end-to-end generative recommendation foundation models. On the other hand, many methods targeting these beyond-accuracy objectives often require architecture-specific modifications and discard these valuable human priors by learning user intent in a fully unsupervised manner. Instead of discarding the human priors accumulated over years of practice, we introduce a backbone-agnostic framework that seamlessly integrates these human priors directly into the end-to-end training of generative recommenders. With lightweight, prior-conditioned adapter heads inspired by efficient LLM decoding strategies, our approach guides the model to disentangle user intent along human-understandable axes (e.g., interaction types, long- vs. short-term interests). We also introduce a hierarchical composition strategy for modeling complex interactions across different prior types. Extensive experiments on three large-scale datasets demonstrate that our method significantly enhances both accuracy and beyond-accuracy objectives. We also show that human priors allow the backbone model to more effectively leverage longer context lengths and larger model sizes.
Context: Large language models (LLMs) are released faster than users' ability to evaluate them rigorously. When LLMs underpin research, such as identifying relevant literature for systematic reviews (SRs), robust empirical assessment is essential. Objective: We identify and discuss key challenges in assessing LLM performance for selecting relevant literature, identify good (evaluation) practices, and propose recommendations. Method: Using a recent large-scale study as an example, we identify problems with the use of traditional metrics for assessing the performance of Gen-AI tools for identifying relevant literature in SRs. We analyzed 27 additional papers investigating this issue, extracted the performance metrics, and found both good practices and widespread problems, especially with the use and reporting of performance metrics for SR screening. Results: Major weaknesses included: i) a failure to use metrics that are robust to imbalanced data and do not directly indicate whether results are better than chance, e.g., the use of Accuracy, ii) a failure to consider the impact of lost evidence when making claims concerning workload savings, and iii) pervasive failure to report the full confusion matrix (or performance metrics from which it can be reconstructed) which is essential for future meta-analyses. On the positive side, we extract good (evaluation) practices on which our recommendations for researchers and practitioners, as well as policymakers, are built. Conclusions: SR screening evaluations should prioritize lost evidence/recall alongside chance-anchored and cost-sensitive Weighted MCC (WMCC) metric, report complete confusion matrices, treat unclassifiable outputs as referred-back positives for assessment, adopt leakage-aware designs with non-LLM baselines and open artifacts, and ground conclusions in cost-benefit analysis where FNs carry higher penalties than FPs.
Dynamic recommendation systems aim to provide personalized suggestions by modeling temporal user-item interactions across time-series behavioral data. Recent studies have leveraged pre-trained dynamic graph neural networks (GNNs) to learn user-item representations over temporal snapshot graphs. However, fine-tuning GNNs on these graphs often results in generalization issues due to temporal discrepancies between pre-training and fine-tuning stages, limiting the model's ability to capture evolving user preferences. To address this, we propose TarDGR, a task-aware retrieval-augmented framework designed to enhance generalization capability by incorporating task-aware model and retrieval-augmentation. Specifically, TarDGR introduces a Task-Aware Evaluation Mechanism to identify semantically relevant historical subgraphs, enabling the construction of task-specific datasets without manual labeling. It also presents a Graph Transformer-based Task-Aware Model that integrates semantic and structural encodings to assess subgraph relevance. During inference, TarDGR retrieves and fuses task-aware subgraphs with the query subgraph, enriching its representation and mitigating temporal generalization issues. Experiments on multiple large-scale dynamic graph datasets demonstrate that TarDGR consistently outperforms state-of-the-art methods, with extensive empirical evidence underscoring its superior accuracy and generalization capabilities.
Online health resources and large language models (LLMs) are increasingly used as a first point of contact for medical decision-making, yet their reliability in healthcare remains limited by low accuracy, lack of transparency, and susceptibility to unverified information. We introduce a proof-of-concept conversational self-triage system that guides LLMs with 100 clinically validated flowcharts from the American Medical Association, providing a structured and auditable framework for patient decision support. The system leverages a multi-agent framework consisting of a retrieval agent, a decision agent, and a chat agent to identify the most relevant flowchart, interpret patient responses, and deliver personalized, patient-friendly recommendations, respectively. Performance was evaluated at scale using synthetic datasets of simulated conversations. The system achieved 95.29% top-3 accuracy in flowchart retrieval (N=2,000) and 99.10% accuracy in flowchart navigation across varied conversational styles and conditions (N=37,200). By combining the flexibility of free-text interaction with the rigor of standardized clinical protocols, this approach demonstrates the feasibility of transparent, accurate, and generalizable AI-assisted self-triage, with potential to support informed patient decision-making while improving healthcare resource utilization.
Link prediction is a fundamental task in graph machine learning with applications, ranging from social recommendation to knowledge graph completion. Fairness in this setting is critical, as biased predictions can exacerbate societal inequalities. Prior work adopts a dyadic definition of fairness, enforcing fairness through demographic parity between intra-group and inter-group link predictions. However, we show that this dyadic framing can obscure underlying disparities across subgroups, allowing systemic biases to go undetected. Moreover, we argue that demographic parity does not meet desired properties for fairness assessment in ranking-based tasks such as link prediction. We formalize the limitations of existing fairness evaluations and propose a framework that enables a more expressive assessment. Additionally, we propose a lightweight post-processing method combined with decoupled link predictors that effectively mitigates bias and achieves state-of-the-art fairness-utility trade-offs.
Recommender systems (RS) are currently being studied to mitigate limitations during cold-start conditions by leveraging modality information or introducing Agent concepts based on the exceptional reasoning capabilities of Large Language Models (LLMs). Meanwhile, food and beverage recommender systems have traditionally used knowledge graph and ontology concepts due to the domain's unique data attributes and relationship characteristics. On this background, we propose MARC, a multimodal and multi-task cocktail recommender system based on Agentic Retrieval-Augmented Generation (RAG) utilizing graph database under cold-start conditions. The proposed system generates high-quality, contextually appropriate answers through two core processes: a task recognition router and a reflection process. The graph database was constructed by processing cocktail data from Kaggle, and its effectiveness was evaluated using 200 manually crafted questions. The evaluation used both LLM-as-a-judge and human evaluation to demonstrate that answers generated via the graph database outperformed those from a simple vector database in terms of quality. The code is available at https://github.com/diddbwls/cocktail_rec_agentrag
Despite massive investments in scale, deep models for click-through rate (CTR) prediction often exhibit rapidly diminishing returns - a stark contrast to the smooth, predictable gains seen in large language models. We identify the root cause as a structural misalignment: Transformers assume sequential compositionality, while CTR data demand combinatorial reasoning over high-cardinality semantic fields. Unstructured attention spreads capacity indiscriminately, amplifying noise under extreme sparsity and breaking scalable learning. To restore alignment, we introduce the Field-Aware Transformer (FAT), which embeds field-based interaction priors into attention through decomposed content alignment and cross-field modulation. This design ensures model complexity scales with the number of fields F, not the total vocabulary size n >> F, leading to tighter generalization and, critically, observed power-law scaling in AUC as model width increases. We present the first formal scaling law for CTR models, grounded in Rademacher complexity, that explains and predicts this behavior. On large-scale benchmarks, FAT improves AUC by up to +0.51% over state-of-the-art methods. Deployed online, it delivers +2.33% CTR and +0.66% RPM. Our work establishes that effective scaling in recommendation arises not from size, but from structured expressivity-architectural coherence with data semantics.