Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Large foundation models (LFMs) transform healthcare AI in prevention, diagnostics, and treatment. However, whether LFMs can provide truly personalized treatment recommendations remains an open question. Recent research has revealed multiple challenges for personalization, including the fundamental generalizability paradox: models achieving high accuracy in one clinical study perform at chance level in others, demonstrating that personalization and external validity exist in tension. This exemplifies broader contradictions in AI-driven healthcare: the privacy-performance paradox, scale-specificity paradox, and the automation-empathy paradox. As another challenge, the degree of causal understanding required for personalized recommendations, as opposed to mere predictive capacities of LFMs, remains an open question. N-of-1 trials -- crossover self-experiments and the gold standard for individual causal inference in personalized medicine -- resolve these tensions by providing within-person causal evidence while preserving privacy through local experimentation. Despite their impressive capabilities, this paper argues that LFMs cannot replace N-of-1 trials. We argue that LFMs and N-of-1 trials are complementary: LFMs excel at rapid hypothesis generation from population patterns using multimodal data, while N-of-1 trials excel at causal validation for a given individual. We propose a hybrid framework that combines the strengths of both to enable personalization and navigate the identified paradoxes: LFMs generate ranked intervention candidates with uncertainty estimates, which trigger subsequent N-of-1 trials. Clarifying the boundary between prediction and causation and explicitly addressing the paradoxical tensions are essential for responsible AI integration in personalized medicine.
The use of Large Language Models (LLMs) in police operations is growing, yet an evaluation framework tailored to police operations remains absent. While LLM's responses may not always be legally incorrect, their unverified use still can lead to severe issues such as unlawful arrests and improper evidence collection. To address this, we propose PAS (Police Action Scenarios), a systematic framework covering the entire evaluation process. Applying this framework, we constructed a novel QA dataset from over 8,000 official documents and established key metrics validated through statistical analysis with police expert judgements. Experimental results show that commercial LLMs struggle with our new police-related tasks, particularly in providing fact-based recommendations. This study highlights the necessity of an expandable evaluation framework to ensure reliable AI-driven police operations. We release our data and prompt template.
Community detection is crucial for applications like targeted marketing and recommendation systems. Traditional methods rely on network structure, and embedding-based models integrate semantic information. However, there is a challenge when a model leverages local and global information from complex structures like social networks. Graph Neural Networks (GNNs) and Transformers have shown superior performance in capturing local and global relationships. In this paper, We propose Graph Integrated Transformer for Community Detection (GIT-CD), a hybrid model combining GNNs and Transformer-based attention mechanisms to enhance community detection in social networks. Specifically, the GNN module captures local graph structures, while the Transformer module models long-range dependencies. A self-optimizing clustering module refines community assignments using K-Means, silhouette loss, and KL divergence minimization. Experimental results on benchmark datasets show that GIT-CD outperforms state-of-the-art models, making it a robust approach for detecting meaningful communities in complex social networks.
Clinical practice guidelines (CPGs) provide evidence-based recommendations for patient care; however, integrating them into Artificial Intelligence (AI) remains challenging. Previous approaches, such as rule-based systems, face significant limitations, including poor interpretability, inconsistent adherence to guidelines, and narrow domain applicability. To address this, we develop and validate CPGPrompt, an auto-prompting system that converts narrative clinical guidelines into large language models (LLMs). Our framework translates CPGs into structured decision trees and utilizes an LLM to dynamically navigate them for patient case evaluation. Synthetic vignettes were generated across three domains (headache, lower back pain, and prostate cancer) and distributed into four categories to test different decision scenarios. System performance was assessed on both binary specialty-referral decisions and fine-grained pathway-classification tasks. The binary specialty referral classification achieved consistently strong performance across all domains (F1: 0.85-1.00), with high recall (1.00 $\pm$ 0.00). In contrast, multi-class pathway assignment showed reduced performance, with domain-specific variations: headache (F1: 0.47), lower back pain (F1: 0.72), and prostate cancer (F1: 0.77). Domain-specific performance differences reflected the structure of each guideline. The headache guideline highlighted challenges with negation handling. The lower back pain guideline required temporal reasoning. In contrast, prostate cancer pathways benefited from quantifiable laboratory tests, resulting in more reliable decision-making.
Recent years have witnessed success of sequential modeling, generative recommender, and large language model for recommendation. Though the scaling law has been validated for sequential models, it showed inefficiency in computational capacity when considering real-world applications like recommendation, due to the non-linear(quadratic) increasing nature of the transformer model. To improve the efficiency of the sequential model, we introduced a novel approach to sequential recommendation that leverages personalization techniques to enhance efficiency and performance. Our method compresses long user interaction histories into learnable tokens, which are then combined with recent interactions to generate recommendations. This approach significantly reduces computational costs while maintaining high recommendation accuracy. Our method could be applied to existing transformer based recommendation models, e.g., HSTU and HLLM. Extensive experiments on multiple sequential models demonstrate its versatility and effectiveness. Source code is available at \href{https://github.com/facebookresearch/PerSRec}{https://github.com/facebookresearch/PerSRec}.
Pharmaceutical three-dimensional (3D) printing is an advanced fabrication technology with the potential to enable truly personalised dosage forms. Recent studies have integrated artificial intelligence (AI) to accelerate formulation and process development, drastically transforming current approaches to pharmaceutical 3D printing. To date, most AI-driven efforts remain narrowly focused, while failing to account for the broader formulation challenges inherent to the technology. Recent advances in AI have introduced artificial general intelligence concepts, wherein systems extend beyond conventional predictive modelling toward more generalised, human-like reasoning. In this work, we investigate the application of large language models (LLMs), fine-tuned on a fused deposition modelling (FDM) dataset comprising over 1400 formulations, to recommend suitable excipients based on active pharmaceutical ingredient (API) dose, and predict filament mechanical properties. Four LLM architectures were fine-tuned, with systematic evaluation of both fine-tuning and generative parameter configurations. Our results demonstrate that Llama2 was best suited for recommending excipients for FDM formulations. Additionally, model selection and parameterisation significantly influence performance, with smaller LLMs exhibiting instances of catastrophic forgetting. Furthermore, we demonstrate: (i) even with relatively small dataset of over 1400 formulations, it can lead to model catastrophic forgetting; (ii) standard LLM metrics only evaluate linguistic performance but not formulation processability; and (iii) LLMs trained on biomedically-related data do not always produce the best results. Addressing these challenges is essential to advancing LLMs beyond linguistic proficiency and toward reliable systems for pharmaceutical formulation development.
Session-based recommendation aims to predict the next item that anonymous users may be interested in, based on their current session interactions. Recent studies have demonstrated that retrieving neighbor sessions to augment the current session can effectively alleviate the data sparsity issue and improve recommendation performance. However, existing methods typically rely on explicitly observed session data, neglecting latent neighbors - not directly observed but potentially relevant within the interest space - thereby failing to fully exploit the potential of neighbor sessions in recommendation. To address the above limitation, we propose a novel model of diffusion-based latent neighbor generation for session-based recommendation, named DiffSBR. Specifically, DiffSBR leverages two diffusion modules, including retrieval-augmented diffusion and self-augmented diffusion, to generate high-quality latent neighbors. In the retrieval-augmented diffusion module, we leverage retrieved neighbors as guiding signals to constrain and reconstruct the distribution of latent neighbors. Meanwhile, we adopt a training strategy that enables the retriever to learn from the feedback provided by the generator. In the self-augmented diffusion module, we explicitly guide the generation of latent neighbors by injecting the current session's multi-modal signals through contrastive learning. After obtaining the generated latent neighbors, we utilize them to enhance session representations for improving session-based recommendation. Extensive experiments on four public datasets show that DiffSBR generates effective latent neighbors and improves recommendation performance against state-of-the-art baselines.
Large Language Model (LLM)-based agents are increasingly deployed in e-commerce applications to assist customer services in tasks such as product inquiries, recommendations, and order management. Existing benchmarks primarily evaluate whether these agents successfully complete the final task, overlooking the intermediate reasoning stages that are crucial for effective decision-making. To address this gap, we propose EComStage, a unified benchmark for evaluating agent-capable LLMs across the comprehensive stage-wise reasoning process: Perception (understanding user intent), Planning (formulating an action plan), and Action (executing the decision). EComStage evaluates LLMs through seven separate representative tasks spanning diverse e-commerce scenarios, with all samples human-annotated and quality-checked. Unlike prior benchmarks that focus only on customer-oriented interactions, EComStage also evaluates merchant-oriented scenarios, including promotion management, content review, and operational support relevant to real-world applications. We evaluate a wide range of over 30 LLMs, spanning from 1B to over 200B parameters, including open-source models and closed-source APIs, revealing stage/orientation-specific strengths and weaknesses. Our results provide fine-grained, actionable insights for designing and optimizing LLM-based agents in real-world e-commerce settings.
We present ML-UCB, a generalized upper confidence bound algorithm that integrates arbitrary machine learning models into multi-armed bandit frameworks. A fundamental challenge in deploying sophisticated ML models for sequential decision-making is the lack of tractable concentration inequalities required for principled exploration. We overcome this limitation by directly modeling the learning curve behavior of the underlying estimator. Specifically, assuming the Mean Squared Error decreases as a power law in the number of training samples, we derive a generalized concentration inequality and prove that ML-UCB achieves sublinear regret. This framework enables the principled integration of any ML model whose learning curve can be empirically characterized, eliminating the need for model-specific theoretical analysis. We validate our approach through experiments on a collaborative filtering recommendation system using online matrix factorization with synthetic data designed to simulate a simplified two-tower model, demonstrating substantial improvements over LinUCB
Capturing complex user preferences from sparse behavioral sequences remains a fundamental challenge in sequential recommendation. Recent latent reasoning methods have shown promise by extending test-time computation through multi-step reasoning, yet they exclusively rely on depth-level scaling along a single trajectory, suffering from diminishing returns as reasoning depth increases. To address this limitation, we propose \textbf{Parallel Latent Reasoning (PLR)}, a novel framework that pioneers width-level computational scaling by exploring multiple diverse reasoning trajectories simultaneously. PLR constructs parallel reasoning streams through learnable trigger tokens in continuous latent space, preserves diversity across streams via global reasoning regularization, and adaptively synthesizes multi-stream outputs through mixture-of-reasoning-streams aggregation. Extensive experiments on three real-world datasets demonstrate that PLR substantially outperforms state-of-the-art baselines while maintaining real-time inference efficiency. Theoretical analysis further validates the effectiveness of parallel reasoning in improving generalization capability. Our work opens new avenues for enhancing reasoning capacity in sequential recommendation beyond existing depth scaling.