Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Accurate and interpretable predictions of depression severity are essential for clinical decision support, yet existing models often lack uncertainty estimates and temporal modeling. We propose PTTSD, a Probabilistic Textual Time Series Depression Detection framework that predicts PHQ-8 scores from utterance-level clinical interviews while modeling uncertainty over time. PTTSD includes sequence-to-sequence and sequence-to-one variants, both combining bidirectional LSTMs, self-attention, and residual connections with Gaussian or Student-t output heads trained via negative log-likelihood. Evaluated on E-DAIC and DAIC-WOZ, PTTSD achieves state-of-the-art performance among text-only systems (e.g., MAE = 3.85 on E-DAIC, 3.55 on DAIC) and produces well-calibrated prediction intervals. Ablations confirm the value of attention and probabilistic modeling, while comparisons with MentalBERT establish generality. A three-part calibration analysis and qualitative case studies further highlight the interpretability and clinical relevance of uncertainty-aware forecasting.
The real world is inherently non-stationary, with ever-changing factors, such as weather conditions and traffic flows, making it challenging for agents to adapt to varying environmental dynamics. Non-Stationary Reinforcement Learning (NSRL) addresses this challenge by training agents to adapt rapidly to sequences of distinct Markov Decision Processes (MDPs). However, existing NSRL approaches often focus on tasks with regularly evolving patterns, leading to limited adaptability in highly dynamic settings. Inspired by the success of Wavelet analysis in time series modeling, specifically its ability to capture signal trends at multiple scales, we propose WISDOM to leverage wavelet-domain predictive task representations to enhance NSRL. WISDOM captures these multi-scale features in evolving MDP sequences by transforming task representation sequences into the wavelet domain, where wavelet coefficients represent both global trends and fine-grained variations of non-stationary changes. In addition to the auto-regressive modeling commonly employed in time series forecasting, we devise a wavelet temporal difference (TD) update operator to enhance tracking and prediction of MDP evolution. We theoretically prove the convergence of this operator and demonstrate policy improvement with wavelet task representations. Experiments on diverse benchmarks show that WISDOM significantly outperforms existing baselines in both sample efficiency and asymptotic performance, demonstrating its remarkable adaptability in complex environments characterized by non-stationary and stochastically evolving tasks.
Artificial intelligence systems in critical fields like autonomous driving and medical imaging analysis often continually learn new tasks using a shared stream of input data. For instance, after learning to detect traffic signs, a model may later need to learn to classify traffic lights or different types of vehicles using the same camera feed. This scenario introduces a challenging setting we term Continual Multitask Learning (CMTL), where a model sequentially learns new tasks on an underlying data distribution without forgetting previously learned abilities. Existing continual learning methods often fail in this setting because they learn fragmented, task-specific features that interfere with one another. To address this, we introduce Learning with Preserving (LwP), a novel framework that shifts the focus from preserving task outputs to maintaining the geometric structure of the shared representation space. The core of LwP is a Dynamically Weighted Distance Preservation (DWDP) loss that prevents representation drift by regularizing the pairwise distances between latent data representations. This mechanism of preserving the underlying geometric structure allows the model to retain implicit knowledge and support diverse tasks without requiring a replay buffer, making it suitable for privacy-conscious applications. Extensive evaluations on time-series and image benchmarks show that LwP not only mitigates catastrophic forgetting but also consistently outperforms state-of-the-art baselines in CMTL tasks. Notably, our method shows superior robustness to distribution shifts and is the only approach to surpass the strong single-task learning baseline, underscoring its effectiveness for real-world dynamic environments.
The analysis of complex building time-series for actionable insights and recommendations remains challenging due to the nonlinear and multi-scale characteristics of energy data. To address this, we propose a framework that fine-tunes visual language large models (VLLMs) on 3D graphical representations of the data. The approach converts 1D time-series into 3D representations using continuous wavelet transforms (CWTs) and recurrence plots (RPs), which capture temporal dynamics and localize frequency anomalies. These 3D encodings enable VLLMs to visually interpret energy-consumption patterns, detect anomalies, and provide recommendations for energy efficiency. We demonstrate the framework on real-world building-energy datasets, where fine-tuned VLLMs successfully monitor building states, identify recurring anomalies, and generate optimization recommendations. Quantitatively, the Idefics-7B VLLM achieves validation losses of 0.0952 with CWTs and 0.1064 with RPs on the University of Sharjah energy dataset, outperforming direct fine-tuning on raw time-series data (0.1176) for anomaly detection. This work bridges time-series analysis and visualization, providing a scalable and interpretable framework for energy analytics.
Time Series Analysis is widely used in various real-world applications such as weather forecasting, financial fraud detection, imputation for missing data in IoT systems, and classification for action recognization. Mixture-of-Experts (MoE), as a powerful architecture, though demonstrating effectiveness in NLP, still falls short in adapting to versatile tasks in time series analytics due to its task-agnostic router and the lack of capability in modeling channel correlations. In this study, we propose a novel, general MoE-based time series framework called PatchMoE to support the intricate ``knowledge'' utilization for distinct tasks, thus task-aware. Based on the observation that hierarchical representations often vary across tasks, e.g., forecasting vs. classification, we propose a Recurrent Noisy Gating to utilize the hierarchical information in routing, thus obtaining task-sepcific capability. And the routing strategy is operated on time series tokens in both temporal and channel dimensions, and encouraged by a meticulously designed Temporal \& Channel Load Balancing Loss to model the intricate temporal and channel correlations. Comprehensive experiments on five downstream tasks demonstrate the state-of-the-art performance of PatchMoE.




Objective: ServiMon is designed to offer a scalable and intelligent pipeline for data collection and auditing to monitor distributed astronomical systems such as the ASTRI Mini-Array. The system enhances quality control, predictive maintenance, and real-time anomaly detection for telescope operations. Methods: ServiMon integrates cloud-native technologies-including Prometheus, Grafana, Cassandra, Kafka, and InfluxDB-for telemetry collection and processing. It employs machine learning algorithms, notably Isolation Forest, to detect anomalies in Cassandra performance metrics. Key indicators such as read/write latency, throughput, and memory usage are continuously monitored, stored as time-series data, and preprocessed for feature engineering. Anomalies detected by the model are logged in InfluxDB v2 and accessed via Flux for real-time monitoring and visualization. Results: AI-based anomaly detection increases system resilience by identifying performance degradation at an early stage, minimizing downtime, and optimizing telescope operations. Additionally, ServiMon supports astrostatistical analysis by correlating telemetry with observational data, thus enhancing scientific data quality. AI-generated alerts also improve real-time monitoring, enabling proactive system management. Conclusion: ServiMon's scalable framework proves effective for predictive maintenance and real-time monitoring of astronomical infrastructures. By leveraging cloud and edge computing, it is adaptable to future large-scale experiments, optimizing both performance and cost. The combination of machine learning and big data analytics makes ServiMon a robust and flexible solution for modern and next-generation observational astronomy.
We present StructuralDecompose, an R package for modular and interpretable time series decomposition. Unlike existing approaches that treat decomposition as a monolithic process, StructuralDecompose separates the analysis into distinct components: changepoint detection, anomaly detection, smoothing, and decomposition. This design provides flexibility and robust- ness, allowing users to tailor methods to specific time series characteristics. We demonstrate the package on simulated and real-world datasets, benchmark its performance against state-of-the- art tools such as Rbeast and autostsm, and discuss its role in interpretable machine learning workflows.




Modern state-space models (SSMs) often utilize transition matrices which enable efficient computation but pose restrictions on the model's expressivity, as measured in terms of the ability to emulate finite-state automata (FSA). While unstructured transition matrices are optimal in terms of expressivity, they come at a prohibitively high compute and memory cost even for moderate state sizes. We propose a structured sparse parametrization of transition matrices in SSMs that enables FSA state tracking with optimal state size and depth, while keeping the computational cost of the recurrence comparable to that of diagonal SSMs. Our method, PD-SSM, parametrizes the transition matrix as the product of a column one-hot matrix ($P$) and a complex-valued diagonal matrix ($D$). Consequently, the computational cost of parallel scans scales linearly with the state size. Theoretically, the model is BIBO-stable and can emulate any $N$-state FSA with one layer of dimension $N$ and a linear readout of size $N \times N$, significantly improving on all current structured SSM guarantees. Experimentally, the model significantly outperforms a wide collection of modern SSM variants on various FSA state tracking tasks. On multiclass time-series classification, the performance is comparable to that of neural controlled differential equations, a paradigm explicitly built for time-series analysis. Finally, we integrate PD-SSM into a hybrid Transformer-SSM architecture and demonstrate that the model can effectively track the states of a complex FSA in which transitions are encoded as a set of variable-length English sentences. The code is available at https://github.com/IBM/expressive-sparse-state-space-model
Transfer entropy measures directed information flow in time series, and it has become a fundamental quantity in applications spanning neuroscience, finance, and complex systems analysis. However, existing estimation methods suffer from the curse of dimensionality, require restrictive distributional assumptions, or need exponentially large datasets for reliable convergence. We address these limitations in the literature by proposing TENDE (Transfer Entropy Neural Diffusion Estimation), a novel approach that leverages score-based diffusion models to estimate transfer entropy through conditional mutual information. By learning score functions of the relevant conditional distributions, TENDE provides flexible, scalable estimation while making minimal assumptions about the underlying data-generating process. We demonstrate superior accuracy and robustness compared to existing neural estimators and other state-of-the-art approaches across synthetic benchmarks and real data.
Existing positional encoding methods in transformers are fundamentally signal-agnostic, deriving positional information solely from sequence indices while ignoring the underlying signal characteristics. This limitation is particularly problematic for time series analysis, where signals exhibit complex, non-stationary dynamics across multiple temporal scales. We introduce Dynamic Wavelet Positional Encoding (DyWPE), a novel signal-aware framework that generates positional embeddings directly from input time series using the Discrete Wavelet Transform (DWT). Comprehensive experiments in ten diverse time series datasets demonstrate that DyWPE consistently outperforms eight existing state-of-the-art positional encoding methods, achieving average relative improvements of 9.1\% compared to baseline sinusoidal absolute position encoding in biomedical signals, while maintaining competitive computational efficiency.