Unsupervised domain adaptation for semantic segmentation (DASS) aims to transfer knowledge from a label-rich source domain to a target domain with no labels. Two key approaches in DASS are (1) vision-only approaches using masking or multi-resolution crops, and (2) language-based approaches that use generic class-wise prompts informed by target domain (e.g. "a {snowy} photo of a {class}"). However, the former is susceptible to noisy pseudo-labels that are biased to the source domain. The latter does not fully capture the intricate spatial relationships of objects -- key for dense prediction tasks. To this end, we propose LangDA. LangDA addresses these challenges by, first, learning contextual relationships between objects via VLM-generated scene descriptions (e.g. "a pedestrian is on the sidewalk, and the street is lined with buildings."). Second, LangDA aligns the entire image features with text representation of this context-aware scene caption and learns generalized representations via text. With this, LangDA sets the new state-of-the-art across three DASS benchmarks, outperforming existing methods by 2.6%, 1.4% and 3.9%.




Photo-realistic rendering and novel view synthesis play a crucial role in human-computer interaction tasks, from gaming to path planning. Neural Radiance Fields (NeRFs) model scenes as continuous volumetric functions and achieve remarkable rendering quality. However, NeRFs often struggle in large, low-textured areas, producing cloudy artifacts known as ''floaters'' that reduce scene realism, especially in indoor environments with featureless architectural surfaces like walls, ceilings, and floors. To overcome this limitation, prior work has integrated geometric constraints into the NeRF pipeline, typically leveraging depth information derived from Structure from Motion or Multi-View Stereo. Yet, conventional RGB-feature correspondence methods face challenges in accurately estimating depth in textureless regions, leading to unreliable constraints. This challenge is further complicated in 360-degree ''inside-out'' views, where sparse visual overlap between adjacent images further hinders depth estimation. In order to address these issues, we propose an efficient and robust method for computing dense depth priors, specifically tailored for large low-textured architectural surfaces in indoor environments. We introduce a novel depth loss function to enhance rendering quality in these challenging, low-feature regions, while complementary depth-patch regularization further refines depth consistency across other areas. Experiments with Instant-NGP on two synthetic 360-degree indoor scenes demonstrate improved visual fidelity with our method compared to standard photometric loss and Mean Squared Error depth supervision.
Aligning generated images to complicated text prompts and human preferences is a central challenge in Artificial Intelligence-Generated Content (AIGC). With reward-enhanced diffusion distillation emerging as a promising approach that boosts controllability and fidelity of text-to-image models, we identify a fundamental paradigm shift: as conditions become more specific and reward signals stronger, the rewards themselves become the dominant force in generation. In contrast, the diffusion losses serve as an overly expensive form of regularization. To thoroughly validate our hypothesis, we introduce R0, a novel conditional generation approach via regularized reward maximization. Instead of relying on tricky diffusion distillation losses, R0 proposes a new perspective that treats image generations as an optimization problem in data space which aims to search for valid images that have high compositional rewards. By innovative designs of the generator parameterization and proper regularization techniques, we train state-of-the-art few-step text-to-image generative models with R0 at scales. Our results challenge the conventional wisdom of diffusion post-training and conditional generation by demonstrating that rewards play a dominant role in scenarios with complex conditions. We hope our findings can contribute to further research into human-centric and reward-centric generation paradigms across the broader field of AIGC. Code is available at https://github.com/Luo-Yihong/R0.
We present TopoGaussian, a holistic, particle-based pipeline for inferring the interior structure of an opaque object from easily accessible photos and videos as input. Traditional mesh-based approaches require tedious and error-prone mesh filling and fixing process, while typically output rough boundary surface. Our pipeline combines Gaussian Splatting with a novel, versatile particle-based differentiable simulator that simultaneously accommodates constitutive model, actuator, and collision, without interference with mesh. Based on the gradients from this simulator, we provide flexible choice of topology representation for optimization, including particle, neural implicit surface, and quadratic surface. The resultant pipeline takes easily accessible photos and videos as input and outputs the topology that matches the physical characteristics of the input. We demonstrate the efficacy of our pipeline on a synthetic dataset and four real-world tasks with 3D-printed prototypes. Compared with existing mesh-based method, our pipeline is 5.26x faster on average with improved shape quality. These results highlight the potential of our pipeline in 3D vision, soft robotics, and manufacturing applications.
Existing image-based virtual try-on methods directly transfer specific clothing to a human image without utilizing clothing attributes to refine the transferred clothing geometry and textures, which causes incomplete and blurred clothing appearances. In addition, these methods usually mask the limb textures of the input for the clothing-agnostic person representation, which results in inaccurate predictions for human limb regions (i.e., the exposed arm skin), especially when transforming between long-sleeved and short-sleeved garments. To address these problems, we present a progressive virtual try-on framework, named PL-VTON, which performs pixel-level clothing warping based on multiple attributes of clothing and embeds explicit limb-aware features to generate photo-realistic try-on results. Specifically, we design a Multi-attribute Clothing Warping (MCW) module that adopts a two-stage alignment strategy based on multiple attributes to progressively estimate pixel-level clothing displacements. A Human Parsing Estimator (HPE) is then introduced to semantically divide the person into various regions, which provides structural constraints on the human body and therefore alleviates texture bleeding between clothing and limb regions. Finally, we propose a Limb-aware Texture Fusion (LTF) module to estimate high-quality details in limb regions by fusing textures of the clothing and the human body with the guidance of explicit limb-aware features. Extensive experiments demonstrate that our proposed method outperforms the state-of-the-art virtual try-on methods both qualitatively and quantitatively. The code is available at https://github.com/xyhanHIT/PL-VTON.




In layout-to-image (L2I) synthesis, controlled complex scenes are generated from coarse information like bounding boxes. Such a task is exciting to many downstream applications because the input layouts offer strong guidance to the generation process while remaining easily reconfigurable by humans. In this paper, we proposed STyled LAYout Diffusion (STAY Diffusion), a diffusion-based model that produces photo-realistic images and provides fine-grained control of stylized objects in scenes. Our approach learns a global condition for each layout, and a self-supervised semantic map for weight modulation using a novel Edge-Aware Normalization (EA Norm). A new Styled-Mask Attention (SM Attention) is also introduced to cross-condition the global condition and image feature for capturing the objects' relationships. These measures provide consistent guidance through the model, enabling more accurate and controllable image generation. Extensive benchmarking demonstrates that our STAY Diffusion presents high-quality images while surpassing previous state-of-the-art methods in generation diversity, accuracy, and controllability.




Human-centric volumetric videos offer immersive free-viewpoint experiences, yet existing methods focus either on replaying general dynamic scenes or animating human avatars, limiting their ability to re-perform general dynamic scenes. In this paper, we present RePerformer, a novel Gaussian-based representation that unifies playback and re-performance for high-fidelity human-centric volumetric videos. Specifically, we hierarchically disentangle the dynamic scenes into motion Gaussians and appearance Gaussians which are associated in the canonical space. We further employ a Morton-based parameterization to efficiently encode the appearance Gaussians into 2D position and attribute maps. For enhanced generalization, we adopt 2D CNNs to map position maps to attribute maps, which can be assembled into appearance Gaussians for high-fidelity rendering of the dynamic scenes. For re-performance, we develop a semantic-aware alignment module and apply deformation transfer on motion Gaussians, enabling photo-real rendering under novel motions. Extensive experiments validate the robustness and effectiveness of RePerformer, setting a new benchmark for playback-then-reperformance paradigm in human-centric volumetric videos.
Recent developments in generative diffusion models have turned many dreams into realities. For video object insertion, existing methods typically require additional information, such as a reference video or a 3D asset of the object, to generate the synthetic motion. However, inserting an object from a single reference photo into a target background video remains an uncharted area due to the lack of unseen motion information. We propose DreamInsert, which achieves Image-to-Video Object Insertion in a training-free manner for the first time. By incorporating the trajectory of the object into consideration, DreamInsert can predict the unseen object movement, fuse it harmoniously with the background video, and generate the desired video seamlessly. More significantly, DreamInsert is both simple and effective, achieving zero-shot insertion without end-to-end training or additional fine-tuning on well-designed image-video data pairs. We demonstrated the effectiveness of DreamInsert through a variety of experiments. Leveraging this capability, we present the first results for Image-to-Video object insertion in a training-free manner, paving exciting new directions for future content creation and synthesis. The code will be released soon.
Progress in Embodied AI has made it possible for end-to-end-trained agents to navigate in photo-realistic environments with high-level reasoning and zero-shot or language-conditioned behavior, but benchmarks are still dominated by simulation. In this work, we focus on the fine-grained behavior of fast-moving real robots and present a large-scale experimental study involving \numepisodes{} navigation episodes in a real environment with a physical robot, where we analyze the type of reasoning emerging from end-to-end training. In particular, we study the presence of realistic dynamics which the agent learned for open-loop forecasting, and their interplay with sensing. We analyze the way the agent uses latent memory to hold elements of the scene structure and information gathered during exploration. We probe the planning capabilities of the agent, and find in its memory evidence for somewhat precise plans over a limited horizon. Furthermore, we show in a post-hoc analysis that the value function learned by the agent relates to long-term planning. Put together, our experiments paint a new picture on how using tools from computer vision and sequential decision making have led to new capabilities in robotics and control. An interactive tool is available at europe.naverlabs.com/research/publications/reasoning-in-visual-navigation-of-end-to-end-trained-agents.




Vision-Language-Action (VLA) models excel at robotic tasks by leveraging large-scale 2D vision-language pretraining, but their reliance on RGB images limits spatial reasoning critical for real-world interaction. Retraining these models with 3D data is computationally prohibitive, while discarding existing 2D datasets wastes valuable resources. To bridge this gap, we propose PointVLA, a framework that enhances pre-trained VLAs with point cloud inputs without requiring retraining. Our method freezes the vanilla action expert and injects 3D features via a lightweight modular block. To identify the most effective way of integrating point cloud representations, we conduct a skip-block analysis to pinpoint less useful blocks in the vanilla action expert, ensuring that 3D features are injected only into these blocks--minimizing disruption to pre-trained representations. Extensive experiments demonstrate that PointVLA outperforms state-of-the-art 2D imitation learning methods, such as OpenVLA, Diffusion Policy and DexVLA, across both simulated and real-world robotic tasks. Specifically, we highlight several key advantages of PointVLA enabled by point cloud integration: (1) Few-shot multi-tasking, where PointVLA successfully performs four different tasks using only 20 demonstrations each; (2) Real-vs-photo discrimination, where PointVLA distinguishes real objects from their images, leveraging 3D world knowledge to improve safety and reliability; (3) Height adaptability, Unlike conventional 2D imitation learning methods, PointVLA enables robots to adapt to objects at varying table height that unseen in train data. Furthermore, PointVLA achieves strong performance in long-horizon tasks, such as picking and packing objects from a moving conveyor belt, showcasing its ability to generalize across complex, dynamic environments.