Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
While works such as OneRec have validated the scaling laws of Large Language Models (LLMs) in recommender systems, they rely on a cumbersome separate vocabulary. This dependency prevents the model architecture from reusing native LLM vocabularies, resulting in high maintenance costs and poor scalability. In response, we aim to efficiently reuse open-source LLM architectures without constructing a separate tokenization vocabulary. Furthermore, we identify that the optimization strategy of OneRec Gradient Bounded Policy Optimization (GBPO),suffers from a "Symmetric Conservatism" problem: its static gradient boundaries structurally suppress the update momentum required for cold-start items and fail to prevent diversity collapse in high-noise environments.To address this issue, we propose SAGE (Sequence-level Adaptive Gradient Evolution), a unified optimization framework tailored for list-wise generative recommendation. SAGE introduces two key innovations:(1) Sequence-level Signal Decoupling: By combining a geometric mean importance ratio with decoupled multi-objective advantages, we eliminate token-level variance and resolve the "Reward Collapse" problem. (2) Asymmetric Adaptive Dynamics: We construct a dynamic gradient manifold that applies a "Boost Factor" to high-potential cold start items to achieve super-linear updates and employs an "Entropy Aware Penalty" to break information cocoons. Theoretical analysis and empirical results demonstrate that SAGE effectively unblocks cold-start traffic and sustains recommendation diversity, all while retaining the numerical stability of GBPO.
Accurately capturing feature interactions is essential in recommender systems, and recent trends show that scaling up model capacity could be a key driver for next-level predictive performance. While prior work has explored various model architectures to capture multi-granularity feature interactions, relatively little attention has been paid to efficient feature handling and scaling model capacity without incurring excessive inference latency. In this paper, we address this by presenting Zenith, a scalable and efficient ranking architecture that learns complex feature interactions with minimal runtime overhead. Zenith is designed to handle a few high-dimensional Prime Tokens with Token Fusion and Token Boost modules, which exhibits superior scaling laws compared to other state-of-the-art ranking methods, thanks to its improved token heterogeneity. Its real-world effectiveness is demonstrated by deploying the architecture to TikTok Live, a leading online livestreaming platform that attracts billions of users globally. Our A/B test shows that Zenith achieves +1.05%/-1.10% in online CTR AUC and Logloss, and realizes +9.93% gains in Quality Watch Session / User and +8.11% in Quality Watch Duration / User.
The training of foundational machine learning interatomic potentials (fMLIPs) relies on diverse databases with energies and forces calculated using ab initio methods. We show that fMLIPs trained on large datasets such as MPtrj, Alexandria, and OMat24 encode inconsistencies from the Materials Project's selective use of the Hubbard U correction, which is applied to certain transition metals only if O or F atoms are present in the simulation cell. This inconsistent use of +U creates two incompatible potential-energy surfaces (PES): a lower-energy GGA surface and a higher-energy GGA+U one. When trained on both, MLIPs interpolate between them, leading to systematic underbinding, or even spurious repulsion, between U-corrected metals and oxygen- or fluorine-containing species. Models such as MACE-OMAT and -MPA exhibit repulsion between U-corrected metals and their oxides, limiting their value for studying catalysis and oxidation. We link the severity of this pathology to the oxygen number density in U-corrected training configurations. This explains why OMAT-trained models are most affected and suggests the issue might worsen as expanding future datasets increasingly include configurations with low oxygen content, such as those generated through combinatorial exploration of multi-element or defect-containing systems. Our simple per-U-corrected-atom shift aligns PBE+U and PBE energies for identical structures, yielding a smoother PES compared to existing correction schemes, which target phase diagram accuracy. As a result, models trained on datasets with our shift applied exhibit smaller mean absolute errors for the adsorption energies of oxygen on U-corrected elemental slabs. Since datasets omitting +U entirely (e.g. MatPES, MP-ALOE) avoid these pathologies, we recommend excluding +U in future fMLIP datasets. For existing datasets, our post-hoc correction provides a low-cost improvement.
Missing-modality information on e-commerce platforms, such as absent product images or textual descriptions, often arises from annotation errors or incomplete metadata, impairing both product presentation and downstream applications such as recommendation systems. Motivated by the multimodal generative capabilities of recent Multimodal Large Language Models (MLLMs), this work investigates a fundamental yet underexplored question: can MLLMs generate missing modalities for products in e-commerce scenarios? We propose the Missing Modality Product Completion Benchmark (MMPCBench), which consists of two sub-benchmarks: a Content Quality Completion Benchmark and a Recommendation Benchmark. We further evaluate six state-of-the-art MLLMs from the Qwen2.5-VL and Gemma-3 model families across nine real-world e-commerce categories, focusing on image-to-text and text-to-image completion tasks. Experimental results show that while MLLMs can capture high-level semantics, they struggle with fine-grained word-level and pixel- or patch-level alignment. In addition, performance varies substantially across product categories and model scales, and we observe no trivial correlation between model size and performance, in contrast to trends commonly reported in mainstream benchmarks. We also explore Group Relative Policy Optimization (GRPO) to better align MLLMs with this task. GRPO improves image-to-text completion but does not yield gains for text-to-image completion. Overall, these findings expose the limitations of current MLLMs in real-world cross-modal generation and represent an early step toward more effective missing-modality product completion.
Link prediction is a cornerstone of the Web ecosystem, powering applications from recommendation and search to knowledge graph completion and collaboration forecasting. However, large-scale networks present unique challenges: they contain hundreds of thousands of nodes and edges with heterogeneous and overlapping community structures that evolve over time. Existing approaches face notable limitations: traditional graph neural networks struggle to capture global structural dependencies, while recent graph transformers achieve strong performance but incur quadratic complexity and lack interpretable latent structure. We propose \textbf{TGSBM} (Transformer-Guided Stochastic Block Model), a framework that integrates the principled generative structure of Overlapping Stochastic Block Models with the representational power of sparse Graph Transformers. TGSBM comprises three main components: (i) \emph{expander-augmented sparse attention} that enables near-linear complexity and efficient global mixing, (ii) a \emph{neural variational encoder} that infers structured posteriors over community memberships and strengths, and (iii) a \emph{neural edge decoder} that reconstructs links via OSBM's generative process, preserving interpretability. Experiments across diverse benchmarks demonstrate competitive performance (mean rank 1.6 under HeaRT protocol), superior scalability (up to $6\times$ faster training), and interpretable community structures. These results position TGSBM as a practical approach that strikes a balance between accuracy, efficiency, and transparency for large-scale link prediction.
Natural-language user profiles have recently attracted attention not only for improved interpretability, but also for their potential to make recommender systems more steerable. By enabling direct editing, natural-language profiles allow users to explicitly articulate preferences that may be difficult to infer from past behavior. However, it remains unclear whether current natural-language-based recommendation methods can follow such steering commands. While existing steerability evaluations have shown some success for well-recognized item attributes (e.g., movie genres), we argue that these benchmarks fail to capture the richer forms of user control that motivate steerable recommendations. To address this gap, we introduce SteerEval, an evaluation framework designed to measure more nuanced and diverse forms of steerability by using interventions that range from genres to content-warning for movies. We assess the steerability of a family of pretrained natural-language recommenders, examine the potential and limitations of steering on relatively niche topics, and compare how different profile and recommendation interventions impact steering effectiveness. Finally, we offer practical design suggestions informed by our findings and discuss future steps in steerable recommender design.
Modern content platforms offer paid promotion to mitigate cold start by allocating exposure via auctions. Our empirical analysis reveals a counterintuitive flaw in this paradigm: while promotion rescues low-to-medium quality content, it can harm high-quality content by forcing exposure to suboptimal audiences, polluting engagement signals and downgrading future recommendation. We recast content promotion as a dual-objective optimization that balances short-term value acquisition with long-term model improvement. To make this tractable at bid time in content promotion, we introduce a decomposable surrogate objective, gradient coverage, and establish its formal connection to Fisher Information and optimal experimental design. We design a two-stage auto-bidding algorithm based on Lagrange duality that dynamically paces budget through a shadow price and optimizes impression-level bids using per-impression marginal utilities. To address missing labels at bid time, we propose a confidence-gated gradient heuristic, paired with a zeroth-order variant for black-box models that reliably estimates learning signals in real time. We provide theoretical guarantees, proving monotone submodularity of the composite objective, sublinear regret in online auction, and budget feasibility. Extensive offline experiments on synthetic and real-world datasets validate the framework: it outperforms baselines, achieves superior final AUC/LogLoss, adheres closely to budget targets, and remains effective when gradients are approximated zeroth-order. These results show that strategic, information-aware promotion can improve long-term model performance and organic outcomes beyond naive impression-maximization strategies.
Large Language Models (LLMs) are increasingly deployed for personalized product recommendations, with practitioners commonly assuming that longer user purchase histories lead to better predictions. We challenge this assumption through a systematic benchmark of four state of the art LLMs GPT-4o-mini, DeepSeek-V3, Qwen2.5-72B, and Gemini 2.5 Flash across context lengths ranging from 5 to 50 items using the REGEN dataset. Surprisingly, our experiments with 50 users in a within subject design reveal no significant quality improvement with increased context length. Quality scores remain flat across all conditions (0.17--0.23). Our findings have significant practical implications: practitioners can reduce inference costs by approximately 88\% by using context (5--10 items) instead of longer histories (50 items), without sacrificing recommendation quality. We also analyze latency patterns across providers and find model specific behaviors that inform deployment decisions. This work challenges the existing ``more context is better'' paradigm and provides actionable guidelines for cost effective LLM based recommendation systems.
Short-video recommender systems typically optimize ranking models using dense user behavioral signals, such as clicks and watch time. However, these signals are only indirect proxies of user satisfaction and often suffer from noise and bias. Recently, explicit satisfaction feedback collected through questionnaires has emerged as a high-quality direct alignment supervision, but is extremely sparse and easily overwhelmed by abundant behavioral data, making it difficult to incorporate into online recommendation models. To address these challenges, we propose a novel framework which is towards End-to-End Alignment of user Satisfaction via Questionaire, named EASQ, to enable real-time alignment of ranking models with true user satisfaction. Specifically, we first construct an independent parameter pathway for sparse questionnaire signals by combining a multi-task architecture and a lightweight LoRA module. The multi-task design separates sparse satisfaction supervision from dense behavioral signals, preventing the former from being overwhelmed. The LoRA module pre-inject these preferences in a parameter-isolated manner, ensuring stability in the backbone while optimizing user satisfaction. Furthermore, we employ a DPO-based optimization objective tailored for online learning, which aligns the main model outputs with sparse satisfaction signals in real time. This design enables end-to-end online learning, allowing the model to continuously adapt to new questionnaire feedback while maintaining the stability and effectiveness of the backbone. Extensive offline experiments and large-scale online A/B tests demonstrate that EASQ consistently improves user satisfaction metrics across multiple scenarios. EASQ has been successfully deployed in a production short-video recommendation system, delivering significant and stable business gains.
Item indexing, which maps a large corpus of items into compact discrete representations, is critical for both discriminative and generative recommender systems, yet existing Vector Quantization (VQ)-based approaches struggle with the highly skewed and non-stationary item distributions common in streaming industry recommenders, leading to poor assignment accuracy, imbalanced cluster occupancy, and insufficient cluster separation. To address these challenges, we propose MERGE, a next-generation item indexing paradigm that adaptively constructs clusters from scratch, dynamically monitors cluster occupancy, and forms hierarchical index structures via fine-to-coarse merging. Extensive experiments demonstrate that MERGE significantly improves assignment accuracy, cluster uniformity, and cluster separation compared with existing indexing methods, while online A/B tests show substantial gains in key business metrics, highlighting its potential as a foundational indexing approach for large-scale recommendation.