Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Large language models (LLMs) show best-in-class performance across a wide range of natural language processing applications. Training these models is an extremely computationally expensive task; frontier Artificial Intelligence (AI) research companies are investing billions of dollars into supercomputing infrastructure to train progressively larger models on increasingly massive datasets. Unfortunately, information about the scaling performance and training considerations of these large training pipelines is scarce in public literature. Working with large-scale datasets and models can be complex and practical recommendations are scarce in the public literature for tuning training performance when scaling up large language models. In this paper, we aim to demystify the large language model pretraining pipeline somewhat - in particular with respect to distributed training, managing large datasets across hundreds of nodes, and scaling up data parallelism with an emphasis on fully leveraging available GPU compute capacity.
Automating the decision of whether a code change requires manual review is vital for maintaining software quality in modern development workflows. However, the emergence of new programming languages and frameworks creates a critical bottleneck: while large volumes of unlabelled code are readily available, there is an insufficient amount of labelled data to train supervised models for review classification. We address this challenge by leveraging Large Language Models (LLMs) to translate code changes from well-resourced languages into equivalent changes in underrepresented or emerging languages, generating synthetic training data where labelled examples are scarce. We assume that although LLMs have learned the syntax and semantics of new languages from available unlabelled code, they have yet to fully grasp which code changes are considered significant or review-worthy within these emerging ecosystems. To overcome this, we use LLMs to generate synthetic change examples and train supervised classifiers on them. We systematically compare the performance of these classifiers against models trained on real labelled data. Our experiments across multiple GitHub repositories and language pairs demonstrate that LLM-generated synthetic data can effectively bootstrap review recommendation systems, narrowing the performance gap even in low-resource settings. This approach provides a scalable pathway to extend automated code review capabilities to rapidly evolving technology stacks, even in the absence of annotated data.
The ranking utility function in an ad recommender system, which linearly combines predictions of various business goals, plays a central role in balancing values across the platform, advertisers, and users. Traditional manual tuning, while offering simplicity and interpretability, often yields suboptimal results due to its unprincipled tuning objectives, the vast amount of parameter combinations, and its lack of personalization and adaptability to seasonality. In this work, we propose a general Deep Reinforcement Learning framework for Personalized Utility Tuning (DRL-PUT) to address the challenges of multi-objective optimization within ad recommender systems. Our key contributions include: 1) Formulating the problem as a reinforcement learning task: given the state of an ad request, we predict the optimal hyperparameters to maximize a pre-defined reward. 2) Developing an approach to directly learn an optimal policy model using online serving logs, avoiding the need to estimate a value function, which is inherently challenging due to the high variance and unbalanced distribution of immediate rewards. We evaluated DRL-PUT through an online A/B experiment in Pinterest's ad recommender system. Compared to the baseline manual utility tuning approach, DRL-PUT improved the click-through rate by 9.7% and the long click-through rate by 7.7% on the treated segment. We conducted a detailed ablation study on the impact of different reward definitions and analyzed the personalization aspect of the learned policy model.
With the dynamic evolution of user interests and the increasing multimodal demands in internet applications, personalized content generation strategies based on static interest preferences struggle to meet practical application requirements. The proposed TIMGen (Temporal Interest-driven Multimodal Generation) model addresses this challenge by modeling the long-term temporal evolution of users' interests and capturing dynamic interest representations with strong temporal dependencies. This model also supports the fusion of multimodal features, such as text, images, video, and audio, and delivers customized content based on multimodal preferences. TIMGen jointly learns temporal dependencies and modal preferences to obtain a unified interest representation, which it then generates to meet users' personalized content needs. TIMGen overcomes the shortcomings of personalized content recommendation methods based on static preferences, enabling flexible and dynamic modeling of users' multimodal interests, better understanding and capturing their interests and preferences. It can be extended to a variety of practical application scenarios, including e-commerce, advertising, online education, and precision medicine, providing insights for future research.
The growing capabilities of Large Language Models (LLMs) show significant potential to enhance healthcare by assisting medical researchers and physicians. However, their reliance on static training data is a major risk when medical recommendations evolve with new research and developments. When LLMs memorize outdated medical knowledge, they can provide harmful advice or fail at clinical reasoning tasks. To investigate this problem, we introduce two novel question-answering (QA) datasets derived from systematic reviews: MedRevQA (16,501 QA pairs covering general biomedical knowledge) and MedChangeQA (a subset of 512 QA pairs where medical consensus has changed over time). Our evaluation of eight prominent LLMs on the datasets reveals consistent reliance on outdated knowledge across all models. We additionally analyze the influence of obsolete pre-training data and training strategies to explain this phenomenon and propose future directions for mitigation, laying the groundwork for developing more current and reliable medical AI systems.
The widespread adoption of Kubernetes (K8s) for orchestrating cloud-native applications has introduced significant security challenges, such as misconfigured resources and overly permissive configurations. Failing to address these issues can result in unauthorized access, privilege escalation, and lateral movement within clusters. Most existing K8s security solutions focus on detecting misconfigurations, typically through static analysis or anomaly detection. In contrast, this paper presents KubeGuard, a novel runtime log-driven recommender framework aimed at mitigating risks by addressing overly permissive configurations. KubeGuard is designed to harden K8s environments through two complementary tasks: Resource Creation and Resource Refinement. It leverages large language models (LLMs) to analyze manifests and runtime logs reflecting actual system behavior, using modular prompt-chaining workflows. This approach enables KubeGuard to create least-privilege configurations for new resources and refine existing manifests to reduce the attack surface. KubeGuard's output manifests are presented as recommendations that users (e.g., developers and operators) can review and adopt to enhance cluster security. Our evaluation demonstrates that KubeGuard effectively generates and refines K8s manifests for Roles, NetworkPolicies, and Deployments, leveraging both proprietary and open-source LLMs. The high precision, recall, and F1-scores affirm KubeGuard's practicality as a framework that translates runtime observability into actionable, least-privilege configuration guidance.
This paper addresses the challenge of jointly modeling user intent diversity and behavioral uncertainty in recommender systems. A unified representation learning framework is proposed. The framework builds a multi-intent representation module and an uncertainty modeling mechanism. It extracts multi-granularity interest structures from user behavior sequences. Behavioral ambiguity and preference fluctuation are captured using Bayesian distribution modeling. In the multi-intent modeling part, the model introduces multiple latent intent vectors. These vectors are weighted and fused using an attention mechanism to generate semantically rich representations of long-term user preferences. In the uncertainty modeling part, the model learns the mean and covariance of behavior representations through Gaussian distributions. This reflects the user's confidence in different behavioral contexts. Next, a learnable fusion strategy is used to combine long-term intent and short-term behavior signals. This produces the final user representation, improving both recommendation accuracy and robustness. The method is evaluated on standard public datasets. Experimental results show that it outperforms existing representative models across multiple metrics. It also demonstrates greater stability and adaptability under cold-start and behavioral disturbance scenarios. The approach alleviates modeling bottlenecks faced by traditional methods when dealing with complex user behavior. These findings confirm the effectiveness and practical value of the unified modeling strategy in real-world recommendation tasks.
Large language models (LLMs) are increasingly being adopted in high-stakes domains. Their capacity to process vast amounts of unstructured data, explore flexible scenarios, and handle a diversity of contextual factors can make them uniquely suited to provide new insights for the complexity of social policymaking. This article evaluates whether LLMs' are aligned with domain experts (and among themselves) to inform social policymaking on the subject of homelessness alleviation - a challenge affecting over 150 million people worldwide. We develop a novel benchmark comprised of decision scenarios with policy choices across four geographies (South Bend, USA; Barcelona, Spain; Johannesburg, South Africa; Macau SAR, China). The policies in scope are grounded in the conceptual framework of the Capability Approach for human development. We also present an automated pipeline that connects the benchmarked policies to an agent-based model, and we explore the social impact of the recommended policies through simulated social scenarios. The paper results reveal promising potential to leverage LLMs for social policy making. If responsible guardrails and contextual calibrations are introduced in collaboration with local domain experts, LLMs can provide humans with valuable insights, in the form of alternative policies at scale.
In this study, we conduct a resume-screening experiment (N=528) where people collaborate with simulated AI models exhibiting race-based preferences (bias) to evaluate candidates for 16 high and low status occupations. Simulated AI bias approximates factual and counterfactual estimates of racial bias in real-world AI systems. We investigate people's preferences for White, Black, Hispanic, and Asian candidates (represented through names and affinity groups on quality-controlled resumes) across 1,526 scenarios and measure their unconscious associations between race and status using implicit association tests (IATs), which predict discriminatory hiring decisions but have not been investigated in human-AI collaboration. When making decisions without AI or with AI that exhibits no race-based preferences, people select all candidates at equal rates. However, when interacting with AI favoring a particular group, people also favor those candidates up to 90% of the time, indicating a significant behavioral shift. The likelihood of selecting candidates whose identities do not align with common race-status stereotypes can increase by 13% if people complete an IAT before conducting resume screening. Finally, even if people think AI recommendations are low quality or not important, their decisions are still vulnerable to AI bias under certain circumstances. This work has implications for people's autonomy in AI-HITL scenarios, AI and work, design and evaluation of AI hiring systems, and strategies for mitigating bias in collaborative decision-making tasks. In particular, organizational and regulatory policy should acknowledge the complex nature of AI-HITL decision making when implementing these systems, educating people who use them, and determining which are subject to oversight.
Integrating product catalogs and user behavior into LLMs can enhance recommendations with broad world knowledge, but the scale of real-world item catalogs, often containing millions of discrete item identifiers (Item IDs), poses a significant challenge. This contrasts with the smaller, tokenized text vocabularies typically used in LLMs. The predominant view within the LLM-based recommendation literature is that it is infeasible to treat item ids as a first class citizen in the LLM and instead some sort of tokenization of an item into multiple tokens is required. However, this creates a key practical bottleneck in serving these models for real-time low-latency applications. Our paper challenges this predominant practice and integrates item ids as first class citizens into the LLM. We provide simple, yet highly effective, novel training and inference modifications that enable single-token representations of items and single-step decoding. Our method shows improvements in recommendation quality (Recall and NDCG) over existing techniques on the Amazon shopping datasets while significantly improving inference efficiency by 5x-14x. Our work offers an efficiency perspective distinct from that of other popular approaches within LLM-based recommendation, potentially inspiring further research and opening up a new direction for integrating IDs into LLMs. Our code is available here https://drive.google.com/file/d/1cUMj37rV0Z1bCWMdhQ6i4q4eTRQLURtC