Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Zero-Shot image Anomaly Detection (ZSAD) aims to detect and localise anomalies without access to any normal training samples of the target data. While recent ZSAD approaches leverage additional modalities such as language to generate fine-grained prompts for localisation, vision-only methods remain limited to image-level classification, lacking spatial precision. In this work, we introduce a simple yet effective training-free vision-only ZSAD framework that circumvents the need for fine-grained prompts by leveraging the inversion of a pretrained Denoising Diffusion Implicit Model (DDIM). Specifically, given an input image and a generic text description (e.g., "an image of an [object class]"), we invert the image to obtain latent representations and initiate the denoising process from a fixed intermediate timestep to reconstruct the image. Since the underlying diffusion model is trained solely on normal data, this process yields a normal-looking reconstruction. The discrepancy between the input image and the reconstructed one highlights potential anomalies. Our method achieves state-of-the-art performance on VISA dataset, demonstrating strong localisation capabilities without auxiliary modalities and facilitating a shift away from prompt dependence for zero-shot anomaly detection research. Code is available at https://github.com/giddyyupp/DIVAD.
Optics-guided thermal UAV image super-resolution has attracted significant research interest due to its potential in all-weather monitoring applications. However, existing methods typically compress optical features to match thermal feature dimensions for cross-modal alignment and fusion, which not only causes the loss of high-frequency information that is beneficial for thermal super-resolution, but also introduces physically inconsistent artifacts such as texture distortions and edge blurring by overlooking differences in the imaging physics between modalities. To address these challenges, we propose PCNet to achieve cross-resolution mutual enhancement between optical and thermal modalities, while physically constraining the optical guidance process via thermal conduction to enable robust thermal UAV image super-resolution. In particular, we design a Cross-Resolution Mutual Enhancement Module (CRME) to jointly optimize thermal image super-resolution and optical-to-thermal modality conversion, facilitating effective bidirectional feature interaction across resolutions while preserving high-frequency optical priors. Moreover, we propose a Physics-Driven Thermal Conduction Module (PDTM) that incorporates two-dimensional heat conduction into optical guidance, modeling spatially-varying heat conduction properties to prevent inconsistent artifacts. In addition, we introduce a temperature consistency loss that enforces regional distribution consistency and boundary gradient smoothness to ensure generated thermal images align with real-world thermal radiation principles. Extensive experiments on VGTSR2.0 and DroneVehicle datasets demonstrate that PCNet significantly outperforms state-of-the-art methods on both reconstruction quality and downstream tasks including semantic segmentation and object detection.
We present CageDroneRF (CDRF), a large-scale benchmark for Radio-Frequency (RF) drone detection and identification built from real-world captures and systematically generated synthetic variants. CDRF addresses the scarcity and limited diversity of existing RF datasets by coupling extensive raw recordings with a principled augmentation pipeline that (i) precisely controls Signal-to-Noise Ratio (SNR), (ii) injects interfering emitters, and (iii) applies frequency shifts with label-consistent bounding-box transformations for detection. This dataset spans a wide range of contemporary drone models, many unavailable in current public datasets, and acquisition conditions, derived from data collected at the Rowan University campus and within a controlled RF-cage facility. CDRF is released with interoperable open-source tools for data generation, preprocessing, augmentation, and evaluation that also operate on existing public benchmarks. CDRF enables standardized benchmarking for classification, open-set recognition, and object detection, supporting rigorous comparisons and reproducible pipelines. By releasing this comprehensive benchmark and tooling, CDRF aims to accelerate progress toward robust, generalizable RF perception models.
Motion blur caused by camera shake produces ghosting artifacts that substantially degrade edge side object detection. Existing approaches either suppress blur as noise and lose discriminative structure, or apply full image restoration that increases latency and limits deployment on resource constrained devices. We propose DFRCP, a Dynamic Fuzzy Robust Convolutional Pyramid, as a plug in upgrade to YOLOv11 for blur robust detection. DFRCP enhances the YOLOv11 feature pyramid by combining large scale and medium scale features while preserving native representations, and by introducing Dynamic Robust Switch units that adaptively inject fuzzy features to strengthen global perception under jitter. Fuzzy features are synthesized by rotating and nonlinearly interpolating multiscale features, then merged through a transparency convolution that learns a content adaptive trade off between original and fuzzy cues. We further develop a CUDA parallel rotation and interpolation kernel that avoids boundary overflow and delivers more than 400 times speedup, making the design practical for edge deployment. We train with paired supervision on a private wheat pest damage dataset of about 3,500 images, augmented threefold using two blur regimes, uniform image wide motion blur and bounding box confined rotational blur. On blurred test sets, YOLOv11 with DFRCP achieves about 10.4 percent higher accuracy than the YOLOv11 baseline with only a modest training time overhead, reducing the need for manual filtering after data collection.
This paper presents a novel 3D semantic segmentation method for large-scale point cloud data that does not require annotated 3D training data or paired RGB images. The proposed approach projects 3D point clouds onto 2D images using virtual cameras and performs semantic segmentation via a foundation 2D model guided by natural language prompts. 3D segmentation is achieved by aggregating predictions from multiple viewpoints through weighted voting. Our method outperforms existing training-free approaches and achieves segmentation accuracy comparable to supervised methods. Moreover, it supports open-vocabulary recognition, enabling users to detect objects using arbitrary text queries, thus overcoming the limitations of traditional supervised approaches.
While DETR-like architectures have demonstrated significant potential for monocular 3D object detection, they are often hindered by a critical limitation: the exclusion of 3D attributes from the bipartite matching process. This exclusion arises from the inherent ill-posed nature of 3D estimation from monocular image, which introduces instability during training. Consequently, high-quality 3D predictions can be erroneously suppressed by 2D-only matching criteria, leading to suboptimal results. To address this, we propose Mono3DV, a novel Transformer-based framework. Our approach introduces three key innovations. First, we develop a 3D-Aware Bipartite Matching strategy that directly incorporates 3D geometric information into the matching cost, resolving the misalignment caused by purely 2D criteria. Second, it is important to stabilize the Bipartite Matching to resolve the instability occurring when integrating 3D attributes. Therefore, we propose 3D-DeNoising scheme in the training phase. Finally, recognizing the gradient vanishing issue associated with conventional denoising techniques, we propose a novel Variational Query DeNoising mechanism to overcome this limitation, which significantly enhances model performance. Without leveraging any external data, our method achieves state-of-the-art results on the KITTI 3D object detection benchmark.
Reading order detection is the foundation of document understanding. Most existing methods rely on uniform supervision, implicitly assuming a constant difficulty distribution across layout regions. In this work, we challenge this assumption by revealing a critical flaw: \textbf{Positional Disparity}, a phenomenon where models demonstrate mastery over the deterministic start and end regions but suffer a performance collapse in the complex intermediate sections. This degradation arises because standard training allows the massive volume of easy patterns to drown out the learning signals from difficult layouts. To address this, we propose \textbf{FocalOrder}, a framework driven by \textbf{Focal Preference Optimization (FPO)}. Specifically, FocalOrder employs adaptive difficulty discovery with exponential moving average mechanism to dynamically pinpoint hard-to-learn transitions, while introducing a difficulty-calibrated pairwise ranking objective to enforce global logical consistency. Extensive experiments demonstrate that FocalOrder establishes new state-of-the-art results on OmniDocBench v1.0 and Comp-HRDoc. Our compact model not only outperforms competitive specialized baselines but also significantly surpasses large-scale general VLMs. These results demonstrate that aligning the optimization with intrinsic structural ambiguity of documents is critical for mastering complex document structures.
Detecting objects in 3D space from monocular input is crucial for applications ranging from robotics to scene understanding. Despite advanced performance in the indoor and autonomous driving domains, existing monocular 3D detection models struggle with in-the-wild images due to the lack of 3D in-the-wild datasets and the challenges of 3D annotation. We introduce LabelAny3D, an \emph{analysis-by-synthesis} framework that reconstructs holistic 3D scenes from 2D images to efficiently produce high-quality 3D bounding box annotations. Built on this pipeline, we present COCO3D, a new benchmark for open-vocabulary monocular 3D detection, derived from the MS-COCO dataset and covering a wide range of object categories absent from existing 3D datasets. Experiments show that annotations generated by LabelAny3D improve monocular 3D detection performance across multiple benchmarks, outperforming prior auto-labeling approaches in quality. These results demonstrate the promise of foundation-model-driven annotation for scaling up 3D recognition in realistic, open-world settings.
Masked autoencoders (MAE) have become a dominant paradigm in 3D representation learning, setting new performance benchmarks across various downstream tasks. Existing methods with fixed mask ratio neglect multi-level representational correlations and intrinsic geometric structures, while relying on point-wise reconstruction assumptions that conflict with the diversity of point cloud. To address these issues, we propose a 3D representation learning method, termed Point-SRA, which aligns representations through self-distillation and probabilistic modeling. Specifically, we assign different masking ratios to the MAE to capture complementary geometric and semantic information, while the MeanFlow Transformer (MFT) leverages cross-modal conditional embeddings to enable diverse probabilistic reconstruction. Our analysis further reveals that representations at different time steps in MFT also exhibit complementarity. Therefore, a Dual Self-Representation Alignment mechanism is proposed at both the MAE and MFT levels. Finally, we design a Flow-Conditioned Fine-Tuning Architecture to fully exploit the point cloud distribution learned via MeanFlow. Point-SRA outperforms Point-MAE by 5.37% on ScanObjectNN. On intracranial aneurysm segmentation, it reaches 96.07% mean IoU for arteries and 86.87% for aneurysms. For 3D object detection, Point-SRA achieves 47.3% AP@50, surpassing MaskPoint by 5.12%.
In this paper, we propose a robust real time detection and tracking method for detecting ships in a coastal video sequences. Since coastal scenarios are unpredictable and scenes have dynamic properties it is essential to apply detection methods that are robust to these conditions. This paper presents modified ViBe for moving object detection which detects ships and backwash. In the modified ViBe the probability of losing ships is decreased in comparison with the original ViBe. It is robust to natural sea waves and variation of lights and is capable of quickly updating the background. Based on geometrical properties of ship and some concepts such as brightness distortion, a new method for backwash cancellation is proposed. Experimental results demonstrate that the proposed strategy and methods have outstanding performance in ship detection and tracking. These results also illustrate real time and precise performance of the proposed strategy.