What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Aug 27, 2025
Abstract:Open-vocabulary (OV) 3D object detection is an emerging field, yet its exploration through image-based methods remains limited compared to 3D point cloud-based methods. We introduce OpenM3D, a novel open-vocabulary multi-view indoor 3D object detector trained without human annotations. In particular, OpenM3D is a single-stage detector adapting the 2D-induced voxel features from the ImGeoNet model. To support OV, it is jointly trained with a class-agnostic 3D localization loss requiring high-quality 3D pseudo boxes and a voxel-semantic alignment loss requiring diverse pre-trained CLIP features. We follow the training setting of OV-3DET where posed RGB-D images are given but no human annotations of 3D boxes or classes are available. We propose a 3D Pseudo Box Generation method using a graph embedding technique that combines 2D segments into coherent 3D structures. Our pseudo-boxes achieve higher precision and recall than other methods, including the method proposed in OV-3DET. We further sample diverse CLIP features from 2D segments associated with each coherent 3D structure to align with the corresponding voxel feature. The key to training a highly accurate single-stage detector requires both losses to be learned toward high-quality targets. At inference, OpenM3D, a highly efficient detector, requires only multi-view images for input and demonstrates superior accuracy and speed (0.3 sec. per scene) on ScanNet200 and ARKitScenes indoor benchmarks compared to existing methods. We outperform a strong two-stage method that leverages our class-agnostic detector with a ViT CLIP-based OV classifier and a baseline incorporating multi-view depth estimator on both accuracy and speed.
* ICCV2025
Via

Aug 27, 2025
Abstract:Self-supervised learning (SSL) has emerged as a powerful technique for learning visual representations. While recent SSL approaches achieve strong results in global image understanding, they are limited in capturing the structured representation in scenes. In this work, we propose a self-supervised approach that progressively builds structured visual representations by combining semantic grouping, instance level separation, and hierarchical structuring. Our approach, based on a novel ProtoScale module, captures visual elements across multiple spatial scales. Unlike common strategies like DINO that rely on random cropping and global embeddings, we preserve full scene context across augmented views to improve performance in dense prediction tasks. We validate our method on downstream object detection tasks using a combined subset of multiple datasets (COCO and UA-DETRAC). Experimental results show that our method learns object centric representations that enhance supervised object detection and outperform the state-of-the-art methods, even when trained with limited annotated data and fewer fine-tuning epochs.
Via

Aug 28, 2025
Abstract:Most visible and infrared image fusion (VIF) methods focus primarily on optimizing fused image quality. Recent studies have begun incorporating downstream tasks, such as semantic segmentation and object detection, to provide semantic guidance for VIF. However, semantic segmentation requires extensive annotations, while object detection, despite reducing annotation efforts compared with segmentation, faces challenges in highly crowded scenes due to overlapping bounding boxes and occlusion. Moreover, although RGB-T crowd counting has gained increasing attention in recent years, no studies have integrated VIF and crowd counting into a unified framework. To address these challenges, we propose FusionCounting, a novel multi-task learning framework that integrates crowd counting into the VIF process. Crowd counting provides a direct quantitative measure of population density with minimal annotation, making it particularly suitable for dense scenes. Our framework leverages both input images and population density information in a mutually beneficial multi-task design. To accelerate convergence and balance tasks contributions, we introduce a dynamic loss function weighting strategy. Furthermore, we incorporate adversarial training to enhance the robustness of both VIF and crowd counting, improving the model's stability and resilience to adversarial attacks. Experimental results on public datasets demonstrate that FusionCounting not only enhances image fusion quality but also achieves superior crowd counting performance.
* 11 pages, 9 figures
Via

Sep 09, 2025
Abstract:Active Membership Inference Test (aMINT) is a method designed to detect whether given data were used during the training of machine learning models. In Active MINT, we propose a novel multitask learning process that involves training simultaneously two models: the original or Audited Model, and a secondary model, referred to as the MINT Model, responsible for identifying the data used for training the Audited Model. This novel multi-task learning approach has been designed to incorporate the auditability of the model as an optimization objective during the training process of neural networks. The proposed approach incorporates intermediate activation maps as inputs to the MINT layers, which are trained to enhance the detection of training data. We present results using a wide range of neural networks, from lighter architectures such as MobileNet to more complex ones such as Vision Transformers, evaluated in 5 public benchmarks. Our proposed Active MINT achieves over 80% accuracy in detecting if given data was used for training, significantly outperforming previous approaches in the literature. Our aMINT and related methodological developments contribute to increasing transparency in AI models, facilitating stronger safeguards in AI deployments to achieve proper security, privacy, and copyright protection.
* In Proc. IEEE/CVF Intenational Conference on Computer Vision, ICCV,
2025
Via

Sep 09, 2025
Abstract:We introduce a comprehensive framework for the detection and demodulation of covert electromagnetic signals using solid-state spin sensors. Our approach, named RAPID, is a two-stage hybrid strategy that leverages nitrogen-vacancy (NV) centers to operate below the classical noise floor employing a robust adaptive policy via imitation and distillation. We first formulate the joint detection and estimation task as a unified stochastic optimal control problem, optimizing a composite Bayesian risk objective under realistic physical constraints. The RAPID algorithm solves this by first computing a robust, non-adaptive baseline protocol grounded in the quantum Fisher information matrix (QFIM), and then using this baseline to warm-start an online, adaptive policy learned via deep reinforcement learning (Soft Actor-Critic). This method dynamically optimizes control pulses, interrogation times, and measurement bases to maximize information gain while actively suppressing non-Markovian noise and decoherence. Numerical simulations demonstrate that the protocol achieves a significant sensitivity gain over static methods, maintains high estimation precision in correlated noise environments, and, when applied to sensor arrays, enables coherent quantum beamforming that achieves Heisenberg-like scaling in precision. This work establishes a theoretically rigorous and practically viable pathway for deploying quantum sensors in security-critical applications such as electronic warfare and covert surveillance.
Via

Aug 25, 2025
Abstract:Recently, detection of label errors and improvement of label quality in datasets for supervised learning tasks has become an increasingly important goal in both research and industry. The consequences of incorrectly annotated data include reduced model performance, biased benchmark results, and lower overall accuracy. Current state-of-the-art label error detection methods often focus on a single computer vision task and, consequently, a specific type of dataset, containing, for example, either bounding boxes or pixel-wise annotations. Furthermore, previous methods are not learning-based. In this work, we overcome this research gap. We present a unified method for detecting label errors in object detection, semantic segmentation, and instance segmentation datasets. In a nutshell, our approach - learning to detect label errors by making them - works as follows: we inject different kinds of label errors into the ground truth. Then, the detection of label errors, across all mentioned primary tasks, is framed as an instance segmentation problem based on a composite input. In our experiments, we compare the label error detection performance of our method with various baselines and state-of-the-art approaches of each task's domain on simulated label errors across multiple tasks, datasets, and base models. This is complemented by a generalization study on real-world label errors. Additionally, we release 459 real label errors identified in the Cityscapes dataset and provide a benchmark for real label error detection in Cityscapes.
Via

Aug 24, 2025
Abstract:As a fundamental task for indoor scene understanding, 3D object detection has been extensively studied, and the accuracy on indoor point cloud data has been substantially improved. However, existing researches have been conducted on limited datasets, where the training and testing sets share the same distribution. In this paper, we consider the task of adapting indoor 3D object detectors from one dataset to another, presenting a comprehensive benchmark with ScanNet, SUN RGB-D and 3D Front datasets, as well as our newly proposed large-scale datasets ProcTHOR-OD and ProcFront generated by a 3D simulator. Since indoor point cloud datasets are collected and constructed in different ways, the object detectors are likely to overfit to specific factors within each dataset, such as point cloud quality, bounding box layout and instance features. We conduct experiments across datasets on different adaptation scenarios including synthetic-to-real adaptation, point cloud quality adaptation, layout adaptation and instance feature adaptation, analyzing the impact of different domain gaps on 3D object detectors. We also introduce several approaches to improve adaptation performances, providing baselines for domain adaptive indoor 3D object detection, hoping that future works may propose detectors with stronger generalization ability across domains. Our project homepage can be found in https://jeremyzhao1998.github.io/DAVoteNet-release/.
* Accepted by ACM MM 2025
Via

Aug 29, 2025
Abstract:Feature foundation models - usually vision transformers - offer rich semantic descriptors of images, useful for downstream tasks such as (interactive) segmentation and object detection. For computational efficiency these descriptors are often patch-based, and so struggle to represent the fine features often present in micrographs; they also struggle with the large image sizes present in materials and biological image analysis. In this work, we train a convolutional neural network to upsample low-resolution (i.e, large patch size) foundation model features with reference to the input image. We apply this upsampler network (without any further training) to efficiently featurise and then segment a variety of microscopy images, including plant cells, a lithium-ion battery cathode and organic crystals. The richness of these upsampled features admits separation of hard to segment phases, like hairline cracks. We demonstrate that interactive segmentation with these deep features produces high-quality segmentations far faster and with far fewer labels than training or finetuning a more traditional convolutional network.
Via

Aug 24, 2025
Abstract:In this paper, we propose a new instance-level human-object interaction detection task on videos called ST-HOID, which aims to distinguish fine-grained human-object interactions (HOIs) and the trajectories of subjects and objects. It is motivated by the fact that HOI is crucial for human-centric video content understanding. To solve ST-HOID, we propose a novel method consisting of an object trajectory detection module and an interaction reasoning module. Furthermore, we construct the first dataset named VidOR-HOID for ST-HOID evaluation, which contains 10,831 spatial-temporal HOI instances. We conduct extensive experiments to evaluate the effectiveness of our method. The experimental results demonstrate that our method outperforms the baselines generated by the state-of-the-art methods of image human-object interaction detection, video visual relation detection and video human-object interaction recognition.
Via

Aug 25, 2025
Abstract:As drone use has become more widespread, there is a critical need to ensure safety and security. A key element of this is robust and accurate drone detection and localization. While cameras and other optical sensors like LiDAR are commonly used for object detection, their performance degrades under adverse lighting and environmental conditions. Therefore, this has generated interest in finding more reliable alternatives, such as millimeter-wave (mmWave) radar. Recent research on mmWave radar object detection has predominantly focused on 2D detection of road users. Although these systems demonstrate excellent performance for 2D problems, they lack the sensing capability to measure elevation, which is essential for 3D drone detection. To address this gap, we propose CubeDN, a single-stage end-to-end radar object detection network specifically designed for flying drones. CubeDN overcomes challenges such as poor elevation resolution by utilizing a dual radar configuration and a novel deep learning pipeline. It simultaneously detects, localizes, and classifies drones of two sizes, achieving decimeter-level tracking accuracy at closer ranges with overall $95\%$ average precision (AP) and $85\%$ average recall (AR). Furthermore, CubeDN completes data processing and inference at 10Hz, making it highly suitable for practical applications.
Via
