Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Hyperspectral imaging (HSI) analysis faces computational bottlenecks due to massive data volumes that exceed available memory. While foundation models pre-trained on large remote sensing datasets show promise, their learned representations often fail to transfer to domain-specific applications like close-range agricultural monitoring where spectral signatures, spatial scales, and semantic targets differ fundamentally. This report presents Deep Global Clustering (DGC), a conceptual framework for memory-efficient HSI segmentation that learns global clustering structure from local patch observations without pre-training. DGC operates on small patches with overlapping regions to enforce consistency, enabling training in under 30 minutes on consumer hardware while maintaining constant memory usage. On a leaf disease dataset, DGC achieves background-tissue separation (mean IoU 0.925) and demonstrates unsupervised disease detection through navigable semantic granularity. However, the framework suffers from optimization instability rooted in multi-objective loss balancing: meaningful representations emerge rapidly but degrade due to cluster over-merging in feature space. We position this work as intellectual scaffolding - the design philosophy has merit, but stable implementation requires principled approaches to dynamic loss balancing. Code and data are available at https://github.com/b05611038/HSI_global_clustering.




Multi-object tracking aims to maintain object identities over time by associating detections across video frames. Two dominant paradigms exist in literature: tracking-by-detection methods, which are computationally efficient but rely on handcrafted association heuristics, and end-to-end approaches, which learn association from data at the cost of higher computational complexity. We propose Track-Detection Link Prediction (TDLP), a tracking-by-detection method that performs per-frame association via link prediction between tracks and detections, i.e., by predicting the correct continuation of each track at every frame. TDLP is architecturally designed primarily for geometric features such as bounding boxes, while optionally incorporating additional cues, including pose and appearance. Unlike heuristic-based methods, TDLP learns association directly from data without handcrafted rules, while remaining modular and computationally efficient compared to end-to-end trackers. Extensive experiments on multiple benchmarks demonstrate that TDLP consistently surpasses state-of-the-art performance across both tracking-by-detection and end-to-end methods. Finally, we provide a detailed analysis comparing link prediction with metric learning-based association and show that link prediction is more effective, particularly when handling heterogeneous features such as detection bounding boxes. Our code is available at \href{https://github.com/Robotmurlock/TDLP}{https://github.com/Robotmurlock/TDLP}.
3D meshes are a fundamental representation widely used in computer science and engineering. In robotics, they are particularly valuable because they capture objects in a form that aligns directly with how robots interact with the physical world, enabling core capabilities such as predicting stable grasps, detecting collisions, and simulating dynamics. Although automatic 3D mesh generation methods have shown promising progress in recent years, potentially offering a path toward real-time robot perception, two critical challenges remain. First, generating high-fidelity meshes is prohibitively slow for real-time use, often requiring tens of seconds per object. Second, mesh generation by itself is insufficient. In robotics, a mesh must be contextually grounded, i.e., correctly segmented from the scene and registered with the proper scale and pose. Additionally, unless these contextual grounding steps remain efficient, they simply introduce new bottlenecks. In this work, we introduce an end-to-end system that addresses these challenges, producing a high-quality, contextually grounded 3D mesh from a single RGB-D image in under one second. Our pipeline integrates open-vocabulary object segmentation, accelerated diffusion-based mesh generation, and robust point cloud registration, each optimized for both speed and accuracy. We demonstrate its effectiveness in a real-world manipulation task, showing that it enables meshes to be used as a practical, on-demand representation for robotics perception and planning.
Proficiency in microanastomosis is a critical surgical skill in neurosurgery, where the ability to precisely manipulate fine instruments is crucial to successful outcomes. These procedures require sustained attention, coordinated hand movements, and highly refined motor skills, underscoring the need for objective and systematic methods to evaluate and enhance microsurgical training. Conventional assessment approaches typically rely on expert raters supervising the procedures or reviewing surgical videos, which is an inherently subjective process prone to inter-rater variability, inconsistency, and significant time investment. These limitations highlight the necessity for automated and scalable solutions. To address this challenge, we introduce a novel AI-driven framework for automated action segmentation and performance assessment in microanastomosis procedures, designed to operate efficiently on edge computing platforms. The proposed system comprises three main components: (1) an object tip tracking and localization module based on YOLO and DeepSORT; (2) an action segmentation module leveraging self-similarity matrix for action boundary detection and unsupervised clustering; and (3) a supervised classification module designed to evaluate surgical gesture proficiency. Experimental validation on a dataset of 58 expert-rated microanastomosis videos demonstrates the effectiveness of our approach, achieving a frame-level action segmentation accuracy of 92.4% and an overall skill classification accuracy of 85.5% in replicating expert evaluations. These findings demonstrate the potential of the proposed method to provide objective, real-time feedback in microsurgical education, thereby enabling more standardized, data-driven training protocols and advancing competency assessment in high-stakes surgical environments.
Marine visual understanding is essential for monitoring and protecting marine ecosystems, enabling automatic and scalable biological surveys. However, progress is hindered by limited training data and the lack of a systematic task formulation that aligns domain-specific marine challenges with well-defined computer vision tasks, thereby limiting effective model application. To address this gap, we present ORCA, a multi-modal benchmark for marine research comprising 14,647 images from 478 species, with 42,217 bounding box annotations and 22,321 expert-verified instance captions. The dataset provides fine-grained visual and textual annotations that capture morphology-oriented attributes across diverse marine species. To catalyze methodological advances, we evaluate 18 state-of-the-art models on three tasks: object detection (closed-set and open-vocabulary), instance captioning, and visual grounding. Results highlight key challenges, including species diversity, morphological overlap, and specialized domain demands, underscoring the difficulty of marine understanding. ORCA thus establishes a comprehensive benchmark to advance research in marine domain. Project Page: http://orca.hkustvgd.com/.
Radio frequency (RF) based systems are increasingly used to detect drones by analyzing their RF signal patterns, converting them into spectrogram images which are processed by object detection models. Existing RF attacks against image based models alter digital features, making over-the-air (OTA) implementation difficult due to the challenge of converting digital perturbations to transmittable waveforms that may introduce synchronization errors and interference, and encounter hardware limitations. We present the first physical attack on RF image based drone detectors, optimizing class-specific universal complex baseband (I/Q) perturbation waveforms that are transmitted alongside legitimate communications. We evaluated the attack using RF recordings and OTA experiments with four types of drones. Our results show that modest, structured I/Q perturbations are compatible with standard RF chains and reliably reduce target drone detection while preserving detection of legitimate drones.
Image fusion integrates complementary information from different modalities to generate high-quality fused images, thereby enhancing downstream tasks such as object detection and semantic segmentation. Unlike task-specific techniques that primarily focus on consolidating inter-modal information, general image fusion needs to address a wide range of tasks while improving performance without increasing complexity. To achieve this, we propose SMC-Mamba, a Self-supervised Multiplex Consensus Mamba framework for general image fusion. Specifically, the Modality-Agnostic Feature Enhancement (MAFE) module preserves fine details through adaptive gating and enhances global representations via spatial-channel and frequency-rotational scanning. The Multiplex Consensus Cross-modal Mamba (MCCM) module enables dynamic collaboration among experts, reaching a consensus to efficiently integrate complementary information from multiple modalities. The cross-modal scanning within MCCM further strengthens feature interactions across modalities, facilitating seamless integration of critical information from both sources. Additionally, we introduce a Bi-level Self-supervised Contrastive Learning Loss (BSCL), which preserves high-frequency information without increasing computational overhead while simultaneously boosting performance in downstream tasks. Extensive experiments demonstrate that our approach outperforms state-of-the-art (SOTA) image fusion algorithms in tasks such as infrared-visible, medical, multi-focus, and multi-exposure fusion, as well as downstream visual tasks.




Cell detection in pathological images presents unique challenges due to densely packed objects, subtle inter-class differences, and severe background clutter. In this paper, we propose CellMamba, a lightweight and accurate one-stage detector tailored for fine-grained biomedical instance detection. Built upon a VSSD backbone, CellMamba integrates CellMamba Blocks, which couple either NC-Mamba or Multi-Head Self-Attention (MSA) with a novel Triple-Mapping Adaptive Coupling (TMAC) module. TMAC enhances spatial discriminability by splitting channels into two parallel branches, equipped with dual idiosyncratic and one consensus attention map, adaptively fused to preserve local sensitivity and global consistency. Furthermore, we design an Adaptive Mamba Head that fuses multi-scale features via learnable weights for robust detection under varying object sizes. Extensive experiments on two public datasets-CoNSeP and CytoDArk0-demonstrate that CellMamba outperforms both CNN-based, Transformer-based, and Mamba-based baselines in accuracy, while significantly reducing model size and inference latency. Our results validate CellMamba as an efficient and effective solution for high-resolution cell detection.
Tabular log abstracts objects and events in the real-world system and reports their updates to reflect the change of the system, where one can detect real-world inconsistencies efficiently by debugging corresponding log entries. However, recent advances in processing text-enriched tabular log data overly depend on large language models (LLMs) and other heavy-load models, thus suffering from limited flexibility and scalability. This paper proposes a new framework, GraphLogDebugger, to debug tabular log based on dynamic graphs. By constructing heterogeneous nodes for objects and events and connecting node-wise edges, the framework recovers the system behind the tabular log as an evolving dynamic graph. With the help of our dynamic graph modeling, a simple dynamic Graph Neural Network (GNN) is representative enough to outperform LLMs in debugging tabular log, which is validated by experimental results on real-world log datasets of computer systems and academic papers.




Automated pavement defect detection often struggles to generalize across diverse real-world conditions due to the lack of standardized datasets. Existing datasets differ in annotation styles, distress type definitions, and formats, limiting their integration for unified training. To address this gap, we introduce a comprehensive benchmark dataset that consolidates multiple publicly available sources into a standardized collection of 52747 images from seven countries, with 135277 bounding box annotations covering 13 distinct distress types. The dataset captures broad real-world variation in image quality, resolution, viewing angles, and weather conditions, offering a unique resource for consistent training and evaluation. Its effectiveness was demonstrated through benchmarking with state-of-the-art object detection models including YOLOv8-YOLOv12, Faster R-CNN, and DETR, which achieved competitive performance across diverse scenarios. By standardizing class definitions and annotation formats, this dataset provides the first globally representative benchmark for pavement defect detection and enables fair comparison of models, including zero-shot transfer to new environments.