Multimodal Large Language Models demonstrate strong performance on natural image understanding, yet exhibit limited capability in interpreting scientific images, including but not limited to schematic diagrams, experimental characterizations, and analytical charts. This limitation is particularly pronounced in open-source MLLMs. The gap largely stems from existing datasets with limited domain coverage, coarse structural annotations, and weak semantic grounding. We introduce OmniScience, a large-scale, high-fidelity multi-modal dataset comprising 1.5 million figure-caption-context triplets, spanning more than 10 major scientific disciplines. To obtain image caption data with higher information density and accuracy for multi-modal large-model training, we develop a dynamic model-routing re-captioning pipeline that leverages state-of-the-art multi-modal large language models to generate dense, self-contained descriptions by jointly synthesizing visual features, original figure captions, and corresponding in-text references authored by human scientists. The pipeline is further reinforced with rigorous quality filtering and alignment with human expert judgments, ensuring both factual accuracy and semantic completeness, and boosts the image-text multi-modal similarity score from 0.769 to 0.956. We further propose a caption QA protocol as a proxy task for evaluating visual understanding. Under this setting, Qwen2.5-VL-3B model finetuned on OmniScience show substantial gains over baselines, achieving a gain of 0.378 on MM-MT-Bench and a gain of 0.140 on MMMU.
Multimedia Event Extraction (MEE) aims to identify events and their arguments from documents that contain both text and images. It requires grounding event semantics across different modalities. Progress in MEE is limited by the lack of annotated training data. M2E2 is the only established benchmark, but it provides annotations only for evaluation. This makes direct supervised training impractical. Existing methods mainly rely on cross-modal alignment or inference-time prompting with Vision--Language Models (VLMs). These approaches do not explicitly learn structured event representations and often produce weak argument grounding in multimodal settings. To address these limitations, we propose RMPL, a Relation-aware Multi-task Progressive Learning framework for MEE under low-resource conditions. RMPL incorporates heterogeneous supervision from unimodal event extraction and multimedia relation extraction with stage-wise training. The model is first trained with a unified schema to learn shared event-centric representations across modalities. It is then fine-tuned for event mention identification and argument role extraction using mixed textual and visual data. Experiments on the M2E2 benchmark with multiple VLMs show consistent improvements across different modality settings.
Chain-of-thought (CoT) prompting improves reasoning but often increases inference cost by one to two orders of magnitude. To address these challenges, we present \textbf{OneLatent}, a framework that compresses intermediate reasoning into a single latent token via supervision from rendered CoT images and DeepSeek-OCR hidden states. By rendering textual steps into images, we obtain a deterministic supervision signal that can be inspected and audited without requiring the model to output verbose textual rationales. Across benchmarks, OneLatent reduces average output length by $11\times$ with only a $2.21\%$ average accuracy drop relative to textual CoT, while improving output token contribution (OTC) by $6.8\times$. On long-chain logical reasoning, OneLatent reaches $99.80\%$ on ProntoQA and $97.80\%$ on ProsQA with one latent token, with compression up to $87.4\times$, supporting compression-constrained generalization.
Limited by inference latency, existing robot manipulation policies lack sufficient real-time interaction capability with the environment. Although faster generation methods such as flow matching are gradually replacing diffusion methods, researchers are pursuing even faster generation suitable for interactive robot control. MeanFlow, as a one-step variant of flow matching, has shown strong potential in image generation, but its precision in action generation does not meet the stringent requirements of robotic manipulation. We therefore propose \textbf{HybridFlow}, a \textbf{3-stage method} with \textbf{2-NFE}: Global Jump in MeanFlow mode, ReNoise for distribution alignment, and Local Refine in ReFlow mode. This method balances inference speed and generation quality by leveraging the rapid advantage of MeanFlow one-step generation while ensuring action precision with minimal generation steps. Through real-world experiments, HybridFlow outperforms the 16-step Diffusion Policy by \textbf{15--25\%} in success rate while reducing inference time from 152ms to 19ms (\textbf{8$\times$ speedup}, \textbf{$\sim$52Hz}); it also achieves 70.0\% success on unseen-color OOD grasping and 66.3\% on deformable object folding. We envision HybridFlow as a practical low-latency method to enhance real-world interaction capabilities of robotic manipulation policies.
Soil-transmitted helminth (STH) infections continuously affect a large proportion of the global population, particularly in tropical and sub-tropical regions, where access to specialized diagnostic expertise is limited. Although manual microscopic diagnosis of parasitic eggs remains the diagnostic gold standard, the approach can be labour-intensive, time-consuming, and prone to human error. This paper aims to utilize a vision language model (VLM) such as Microsoft Florence that was fine-tuned to localize all parasitic eggs within microscopic images. The preliminary results show that our localization VLM performs comparatively better than the other object detection methods, such as EfficientDet, with an mIOU of 0.94. This finding demonstrates the potential of the proposed VLM to serve as a core component of an automated framework, offering a scalable engineering solution for intelligent parasitological diagnosis.
Corneal Confocal Microscopy (CCM) is a sensitive tool for assessing small-fiber damage in Diabetic Peripheral Neuropathy (DPN), yet the development of robust, automated deep learning-based diagnostic models is limited by scarce labelled data and fine-grained variability in corneal nerve morphology. Although Artificial Intelligence (AI)-driven foundation generative models excel at natural image synthesis, they often struggle in medical imaging due to limited domain-specific training, compromising the anatomical fidelity required for clinical analysis. To overcome these limitations, we propose a Weight-Decomposed Low-Rank Adaptation (WDLoRA)-based multimodal generative framework for clinically guided CCM image synthesis. WDLoRA is a parameter-efficient fine-tuning (PEFT) mechanism that decouples magnitude and directional weight updates, enabling foundation generative models to independently learn the orientation (nerve topology) and intensity (stromal contrast) required for medical realism. By jointly conditioning on nerve segmentation masks and disease-specific clinical prompts, the model synthesises anatomically coherent images across the DPN spectrum (Control, T1NoDPN, T1DPN). A comprehensive three-pillar evaluation demonstrates that the proposed framework achieves state-of-the-art visual fidelity (Fréchet Inception Distance (FID): 5.18) and structural integrity (Structural Similarity Index Measure (SSIM): 0.630), significantly outperforming GAN and standard diffusion baselines. Crucially, the synthetic images preserve gold-standard clinical biomarkers and are statistically equivalent to real patient data. When used to train automated diagnostic models, the synthetic dataset improves downstream diagnostic accuracy by 2.1% and segmentation performance by 2.2%, validating the framework's potential to alleviate data bottlenecks in medical AI.
In safety-critical applications such as medical image segmentation, prediction systems must provide reliability guarantees that extend beyond conventional expected loss control. While risk-controlling prediction sets (RCPS) offer probabilistic guarantees on the expected risk, they fail to capture tail behavior and worst-case scenarios that are crucial in high-stakes settings. This paper introduces optimized certainty equivalent RCPS (OCE-RCPS), a novel framework that provides high-probability guarantees on general optimized certainty equivalent (OCE) risk measures, including conditional value-at-risk (CVaR) and entropic risk. OCE-RCPS leverages upper confidence bounds to identify prediction set parameters that satisfy user-specified risk tolerance levels with provable reliability. We establish theoretical guarantees showing that OCE-RCPS satisfies the desired probabilistic constraint for loss functions such as miscoverage and false negative rate. Experiments on image segmentation demonstrate that OCE-RCPS consistently meets target satisfaction rates across various risk measures and reliability configurations, while OCE-CRC fails to provide probabilistic guarantees.
Rule learning-based models are widely used in highly interpretable scenarios due to their transparent structures. Inductive logic programming (ILP), a form of machine learning, induces rules from facts while maintaining interpretability. Differentiable ILP models enhance this process by leveraging neural networks to improve robustness and scalability. However, most differentiable ILP methods rely on symbolic datasets, facing challenges when learning directly from raw data. Specifically, they struggle with explicit label leakage: The inability to map continuous inputs to symbolic variables without explicit supervision of input feature labels. In this work, we address this issue by integrating a self-supervised differentiable clustering model with a novel differentiable ILP model, enabling rule learning from raw data without explicit label leakage. The learned rules effectively describe raw data through its features. We demonstrate that our method intuitively and precisely learns generalized rules from time series and image data.
Cooperative perception systems for autonomous driving aim to overcome the limited perception range of a single vehicle by communicating with adjacent agents to share sensing information. While this improves perception performance, these systems also face a significant privacy-leakage issue, as sensitive visual content can potentially be reconstructed from the shared data. In this paper, we propose a novel Privacy-Concealing Cooperation (PCC) framework for Bird's Eye View (BEV) semantic segmentation. Based on commonly shared BEV features, we design a hiding network to prevent an image reconstruction network from recovering the input images from the shared features. An adversarial learning mechanism is employed to train the network, where the hiding network works to conceal the visual clues in the BEV features while the reconstruction network attempts to uncover these clues. To maintain segmentation performance, the perception network is integrated with the hiding network and optimized end-to-end. The experimental results demonstrate that the proposed PCC framework effectively degrades the quality of the reconstructed images with minimal impact on segmentation performance, providing privacy protection for cooperating vehicles. The source code will be made publicly available upon publication.
In this paper, we propose a fast algorithm for element selection, a multiplication-free form of dimension reduction that produces a dimension-reduced vector by simply selecting a subset of elements from the input. Dimension reduction is a fundamental technique for reducing unnecessary model parameters, mitigating overfitting, and accelerating training and inference. A standard approach is principal component analysis (PCA), but PCA relies on matrix multiplications; on resource-constrained systems, the multiplication count itself can become a bottleneck. Element selection eliminates this cost because the reduction consists only of selecting elements, and thus the key challenge is to determine which elements should be retained. We evaluate a candidate subset through the minimum mean-squared error of linear regression that predicts a target vector from the selected elements, where the target may be, for example, a one-hot label vector in classification. When an explicit target is unavailable, the input itself can be used as the target, yielding a reconstruction-based criterion. The resulting optimization is combinatorial, and exhaustive search is impractical. To address this, we derive an efficient formula for the objective change caused by swapping a selected and an unselected element, using the matrix inversion lemma, and we perform a swap-based local search that repeatedly applies objective-decreasing swaps until no further improvement is possible. Experiments on MNIST handwritten-digit images demonstrate the effectiveness of the proposed method.