Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Multi-annotator medical image segmentation is an important research problem, but requires annotated datasets that are expensive to collect. Dermoscopic skin lesion imaging allows human experts and AI systems to observe morphological structures otherwise not discernable from regular clinical photographs. However, currently there are no large-scale publicly available multi-annotator skin lesion segmentation (SLS) datasets with annotator-labels for dermoscopic skin lesion imaging. We introduce ISIC MultiAnnot++, a large public multi-annotator skin lesion segmentation dataset for images from the ISIC Archive. The final dataset contains 17,684 segmentation masks spanning 14,967 dermoscopic images, where 2,394 dermoscopic images have 2-5 segmentations per image, making it the largest publicly available SLS dataset. Further, metadata about the segmentation, including the annotators' skill level and segmentation tool, is included, enabling research on topics such as annotator-specific preference modeling for segmentation and annotator metadata analysis. We provide an analysis on the characteristics of this dataset, curated data partitions, and consensus segmentation masks.




Extracting coherent and human-understandable themes from large collections of unstructured historical newspaper archives presents significant challenges due to topic evolution, Optical Character Recognition (OCR) noise, and the sheer volume of text. Traditional topic-modeling methods, such as Latent Dirichlet Allocation (LDA), often fall short in capturing the complexity and dynamic nature of discourse in historical texts. To address these limitations, we employ BERTopic. This neural topic-modeling approach leverages transformerbased embeddings to extract and classify topics, which, despite its growing popularity, still remains underused in historical research. Our study focuses on articles published between 1955 and 2018, specifically examining discourse on nuclear power and nuclear safety. We analyze various topic distributions across the corpus and trace their temporal evolution to uncover long-term trends and shifts in public discourse. This enables us to more accurately explore patterns in public discourse, including the co-occurrence of themes related to nuclear power and nuclear weapons and their shifts in topic importance over time. Our study demonstrates the scalability and contextual sensitivity of BERTopic as an alternative to traditional approaches, offering richer insights into historical discourses extracted from newspaper archives. These findings contribute to historical, nuclear, and social-science research while reflecting on current limitations and proposing potential directions for future work.
With the wide-scale adoption of conversational AI systems, AI are now able to exert unprecedented influence on human opinion and beliefs. Recent work has shown that many Large Language Models (LLMs) comply with requests to persuade users into harmful beliefs or actions when prompted and that model persuasiveness increases with model scale. However, this prior work looked at persuasion from the threat model of $\textit{misuse}$ (i.e., a bad actor asking an LLM to persuade). In this paper, we instead aim to answer the following question: Under what circumstances would models persuade $\textit{without being explicitly prompted}$, which would shape how concerned we should be about such emergent persuasion risks. To achieve this, we study unprompted persuasion under two scenarios: (i) when the model is steered (through internal activation steering) along persona traits, and (ii) when the model is supervised-finetuned (SFT) to exhibit the same traits. We showed that steering towards traits, both related to persuasion and unrelated, does not reliably increase models' tendency to persuade unprompted, however, SFT does. Moreover, SFT on general persuasion datasets containing solely benign topics admits a model that has a higher propensity to persuade on controversial and harmful topics--showing that emergent harmful persuasion can arise and should be studied further.
Machine Learning (ML) has been a foundational topic in artificial intelligence (AI), providing both theoretical groundwork and practical tools for its exciting advancements. From ResNet for visual recognition to Transformer for vision-language alignment, the AI models have achieved superior capability to humans. Furthermore, the scaling law has enabled AI to initially develop general intelligence, as demonstrated by Large Language Models (LLMs). To this stage, AI has had an enormous influence on society and yet still keeps shaping the future for humanity. However, distribution shift remains a persistent ``Achilles' heel'', fundamentally limiting the reliability and general usefulness of ML systems. Moreover, generalization under distribution shift would also cause trust issues for AIs. Motivated by these challenges, my research focuses on \textit{Trustworthy Machine Learning under Distribution Shifts}, with the goal of expanding AI's robustness, versatility, as well as its responsibility and reliability. We carefully study the three common distribution shifts into: (1) Perturbation Shift, (2) Domain Shift, and (3) Modality Shift. For all scenarios, we also rigorously investigate trustworthiness via three aspects: (1) Robustness, (2) Explainability, and (3) Adaptability. Based on these dimensions, we propose effective solutions and fundamental insights, meanwhile aiming to enhance the critical ML problems, such as efficiency, adaptability, and safety.
Rigorous crop counting is crucial for effective agricultural management and informed intervention strategies. However, in outdoor field environments, partial occlusions combined with inherent ambiguity in distinguishing clustered crops from individual viewpoints poses an immense challenge for image-based segmentation methods. To address these problems, we introduce a novel crop counting framework designed for exact enumeration via 3D instance segmentation. Our approach utilizes 2D images captured from multiple viewpoints and associates independent instance masks for neural radiance field (NeRF) view synthesis. We introduce crop visibility and mask consistency scores, which are incorporated alongside 3D information from a NeRF model. This results in an effective segmentation of crop instances in 3D and highly-accurate crop counts. Furthermore, our method eliminates the dependence on crop-specific parameter tuning. We validate our framework on three agricultural datasets consisting of cotton bolls, apples, and pears, and demonstrate consistent counting performance despite major variations in crop color, shape, and size. A comparative analysis against the state of the art highlights superior performance on crop counting tasks. Lastly, we contribute a cotton plant dataset to advance further research on this topic.
Cognitive diagnosis is an essential research topic in intelligent education, aimed at assessing the level of mastery of different skills by students. So far, many research works have used deep learning models to explore the complex interactions between students, questions, and skills. However, the performance of existing method is frequently limited by the long-tailed distribution and dynamic changes in the data. To address these challenges, we propose a meta-learning framework for cognitive diagnosis based on continual learning (MetaCD). This framework can alleviate the long-tailed problem by utilizing meta-learning to learn the optimal initialization state, enabling the model to achieve good accuracy on new tasks with only a small amount of data. In addition, we utilize a continual learning method named parameter protection mechanism to give MetaCD the ability to adapt to new skills or new tasks, in order to adapt to dynamic changes in data. MetaCD can not only improve the plasticity of our model on a single task, but also ensure the stability and generalization of the model on sequential tasks. Comprehensive experiments on five real-world datasets show that MetaCD outperforms other baselines in both accuracy and generalization.
The rapid acceleration of scientific publishing has created substantial challenges for researchers attempting to discover, contextualize, and interpret relevant literature. Traditional keyword-based search systems provide limited semantic understanding, while existing AI-driven tools typically focus on isolated tasks such as retrieval, clustering, or bibliometric visualization. This paper presents an integrated system for scientific literature exploration that combines large-scale data acquisition, hybrid retrieval, semantic topic modeling, and heterogeneous knowledge graph construction. The system builds a comprehensive corpus by merging full-text data from arXiv with structured metadata from OpenAlex. A hybrid retrieval architecture fuses BM25 lexical search with embedding-based semantic search using Reciprocal Rank Fusion. Topic modeling is performed on retrieved results using BERTopic or non-negative matrix factorization depending on computational resources. A knowledge graph unifies papers, authors, institutions, countries, and extracted topics into an interpretable structure. The system provides a multi-layered exploration environment that reveals not only relevant publications but also the conceptual and relational landscape surrounding a query. Evaluation across multiple queries demonstrates improvements in retrieval relevance, topic coherence, and interpretability. The proposed framework contributes an extensible foundation for AI-assisted scientific discovery.
Audiobook interpretations are attracting increasing attention, as they provide accessible and in-depth analyses of books that offer readers practical insights and intellectual inspiration. However, their manual creation process remains time-consuming and resource-intensive. To address this challenge, we propose AI4Reading, a multi-agent collaboration system leveraging large language models (LLMs) and speech synthesis technology to generate podcast, like audiobook interpretations. The system is designed to meet three key objectives: accurate content preservation, enhanced comprehensibility, and a logical narrative structure. To achieve these goals, we develop a framework composed of 11 specialized agents,including topic analysts, case analysts, editors, a narrator, and proofreaders that work in concert to explore themes, extract real world cases, refine content organization, and synthesize natural spoken language. By comparing expert interpretations with our system's output, the results show that although AI4Reading still has a gap in speech generation quality, the generated interpretative scripts are simpler and more accurate.




As generative artificial intelligence (GenAI) becomes increasingly capable of delivering personalized learning experiences and real-time feedback, a growing number of students are incorporating these tools into their academic workflows. They use GenAI to clarify concepts, solve complex problems, and, in some cases, complete assignments by copying and pasting model-generated contents. While GenAI has the potential to enhance learning experience, it also raises concerns around misinformation, hallucinated outputs, and its potential to undermine critical thinking and problem-solving skills. In response, many universities, colleges, departments, and instructors have begun to develop and adopt policies to guide responsible integration of GenAI into learning environments. However, these policies vary widely across institutions and contexts, and their evolving nature often leaves students uncertain about expectations and best practices. To address this challenge, the authors designed and implemented an automated system for discovering and categorizing AI-related policies found in course syllabi and institutional policy websites. The system combines unsupervised topic modeling techniques to identify key policy themes with large language models (LLMs) to classify the level of GenAI allowance and other requirements in policy texts. The developed application achieved a coherence score of 0.73 for topic discovery. In addition, GPT-4.0-based classification of policy categories achieved precision between 0.92 and 0.97, and recall between 0.85 and 0.97 across eight identified topics. By providing structured and interpretable policy information, this tool promotes the safe, equitable, and pedagogically aligned use of GenAI technologies in education. Furthermore, the system can be integrated into educational technology platforms to help students understand and comply with relevant guidelines.




We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.