Abstract:Evolutionary prompt search is a practical black-box approach for red teaming large language models (LLMs), but existing methods often collapse onto a small family of high-performing prompts, limiting coverage of distinct failure modes. We present a speciated quality-diversity (QD) extension of ToxSearch that maintains multiple high-toxicity prompt niches in parallel rather than optimizing a single best prompt. ToxSearch-S introduces unsupervised prompt speciation via a search methodology that maintains capacity-limited species with exemplar leaders, a reserve pool for outliers and emerging niches, and species-aware parent selection that trades off within-niche exploitation and cross-niche exploration. ToxSearch-S is found to reach higher peak toxicity ($\approx 0.73$ vs.\ $\approx 0.47$) and a extreme heavier tail (top-10 median $0.66$ vs.\ $0.45$) than the baseline, while maintaining comparable performance on moderately toxic prompts. Speciation also yields broader semantic coverage under a topic-as-species analysis (higher effective topic diversity $N_1$ and larger unique topic coverage $K$). Finally, species formed are well-separated in embedding space (mean separation ratio $\approx 1.93$) and exhibit distinct toxicity distributions, indicating that speciation partitions the adversarial space into behaviorally differentiated niches rather than superficial lexical variants. This suggests our approach uncovers a wider range of attack strategies.
Abstract:Large Language Models remain vulnerable to adversarial prompts that elicit toxic content even after safety alignment. We present ToxSearch, a black-box evolutionary framework that tests model safety by evolving prompts in a synchronous steady-state loop. The system employs a diverse set of operators, including lexical substitutions, negation, back-translation, paraphrasing, and two semantic crossover operators, while a moderation oracle provides fitness guidance. Operator-level analysis shows heterogeneous behavior: lexical substitutions offer the best yield-variance trade-off, semantic-similarity crossover acts as a precise low-throughput inserter, and global rewrites exhibit high variance with elevated refusal costs. Using elite prompts evolved on LLaMA 3.1 8B, we observe practically meaningful but attenuated cross-model transfer, with toxicity roughly halving on most targets, smaller LLaMA 3.2 variants showing the strongest resistance, and some cross-architecture models retaining higher toxicity. These results suggest that small, controllable perturbations are effective vehicles for systematic red-teaming and that defenses should anticipate cross-model reuse of adversarial prompts rather than focusing only on single-model hardening.