Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
In Intelligent Transportation Systems (ITS), multi-object tracking is primarily based on frame-based cameras. However, these cameras tend to perform poorly under dim lighting and high-speed motion conditions. Event cameras, characterized by low latency, high dynamic range and high temporal resolution, have considerable potential to mitigate these issues. Compared to frame-based vision, there are far fewer studies on event-based vision. To address this research gap, we introduce an initial pilot dataset tailored for event-based ITS, covering vehicle and pedestrian detection and tracking. We establish a tracking-by-detection benchmark with a specialized feature extractor based on this dataset, achieving excellent performance.




The source detection problem arises when an epidemic process unfolds over a contact network, and the objective is to identify its point of origin, i.e., the source node. Research on this problem began with the seminal work of Shah and Zaman in 2010, who formally defined it and introduced the notion of rumor centrality. With the emergence of Graph Neural Networks (GNNs), several studies have proposed GNN-based approaches to source detection. However, some of these works lack methodological clarity and/or are hard to reproduce. As a result, it remains unclear (to us, at least) whether GNNs truly outperform more traditional source detection methods across comparable settings. In this paper, we first review existing GNN-based methods for source detection, clearly outlining the specific settings each addresses and the models they employ. Building on this research, we propose a principled GNN architecture tailored to the source detection task. We also systematically investigate key questions surrounding this problem. Most importantly, we aim to provide a definitive assessment of how GNNs perform relative to other source detection methods. Our experiments show that GNNs substantially outperform all other methods we test across a variety of network types. Although we initially set out to challenge the notion of GNNs as a solution to source detection, our results instead demonstrate their remarkable effectiveness for this task. We discuss possible reasons for this strong performance. To ensure full reproducibility, we release all code and data on GitHub. Finally, we argue that epidemic source detection should serve as a benchmark task for evaluating GNN architectures.
While current multimodal models can answer questions based on 2D images, they lack intrinsic 3D object perception, limiting their ability to comprehend spatial relationships and depth cues in 3D scenes. In this work, we propose N3D-VLM, a novel unified framework that seamlessly integrates native 3D object perception with 3D-aware visual reasoning, enabling both precise 3D grounding and interpretable spatial understanding. Unlike conventional end-to-end models that directly predict answers from RGB/RGB-D inputs, our approach equips the model with native 3D object perception capabilities, enabling it to directly localize objects in 3D space based on textual descriptions. Building upon accurate 3D object localization, the model further performs explicit reasoning in 3D, achieving more interpretable and structured spatial understanding. To support robust training for these capabilities, we develop a scalable data construction pipeline that leverages depth estimation to lift large-scale 2D annotations into 3D space, significantly increasing the diversity and coverage for 3D object grounding data, yielding over six times larger than the largest existing single-image 3D detection dataset. Moreover, the pipeline generates spatial question-answering datasets that target chain-of-thought (CoT) reasoning in 3D, facilitating joint training for both 3D object localization and 3D spatial reasoning. Experimental results demonstrate that our unified framework not only achieves state-of-the-art performance on 3D grounding tasks, but also consistently surpasses existing methods in 3D spatial reasoning in vision-language model.




This paper studies the use of Conflict-Driven Clause Learning (CDCL) with VSIDS heuristics as a computational engine for discrete facility layout problems. The facility layout problem is modeled as a combinatorial assignment problem with dense logical structure arising from adjacency, separation, and slot-availability constraints. We develop a CNF-based formulation for layout feasibility and compare CDCL-based SAT solving against CP-SAT and MILP formulations under a unified benchmarking framework. Empirical results show that CDCL exhibits near-constant runtime behavior for feasibility detection across increasing problem sizes and constraint densities, while CP-SAT and MILP display polynomial and exponential scaling respectively. To address the limitation of CDCL in objective optimization, we introduce two hybrid architectures that combine CDCL-based feasibility search with CP-SAT optimization. The first architecture rapidly enumerates feasible layouts to trade optimality for speed, while the second uses CDCL to generate warm-start solutions that accelerate exact optimization. The results demonstrate that hybrid approaches can significantly reduce time-to-solution while preserving correctness guarantees, clarifying the algorithmic trade-offs between clause-learning search and exact optimization methods in large-scale discrete layout problems.
Context: Exhaustive fuzzing of modern JavaScript engines is infeasible due to the vast number of program states and execution paths. Coverage-guided fuzzers waste effort on low-risk inputs, often ignoring vulnerability-triggering ones that do not increase coverage. Existing heuristics proposed to mitigate this require expert effort, are brittle, and hard to adapt. Objective: We propose a data-centric, LLM-boosted alternative that learns from historical vulnerabilities to automatically identify minimal static (code) and dynamic (runtime) features for detecting high-risk inputs. Method: Guided by historical V8 bugs, iterative prompting generated 115 static and 49 dynamic features, with the latter requiring only five trace flags, minimizing instrumentation cost. After feature selection, 41 features remained to train an XGBoost model to predict high-risk inputs during fuzzing. Results: Combining static and dynamic features yields over 85% precision and under 1% false alarms. Only 25% of these features are needed for comparable performance, showing that most of the search space is irrelevant. Conclusion: This work introduces feature-guided fuzzing, an automated data-driven approach that replaces coverage with data-directed inference, guiding fuzzers toward high-risk states for faster, targeted, and reproducible vulnerability discovery. To support open science, all scripts and data are available at https://github.com/KKGanguly/DataCentricFuzzJS .




In this paper we propose MECAD, a novel approach for continual anomaly detection using a multi-expert architecture. Our system dynamically assigns experts to object classes based on feature similarity and employs efficient memory management to preserve the knowledge of previously seen classes. By leveraging an optimized coreset selection and a specialized replay buffer mechanism, we enable incremental learning without requiring full model retraining. Our experimental evaluation on the MVTec AD dataset demonstrates that the optimal 5-expert configuration achieves an average AUROC of 0.8259 across 15 diverse object categories while significantly reducing knowledge degradation compared to single-expert approaches. This framework balances computational efficiency, specialized knowledge retention, and adaptability, making it well-suited for industrial environments with evolving product types.
Salient object detection (SOD), a foundational task in computer vision, has advanced from single-modal to multi-modal paradigms to enhance generalization. However, most existing SOD methods assume low-noise visual conditions, overlooking the degradation of segmentation accuracy caused by weather-induced noise in real-world scenarios. In this paper, we propose a SOD framework tailored for diverse weather conditions, encompassing a specific encoder and a replaceable decoder. To enable handling of varying weather noises, we introduce a one-hot vector as a noise indicator to represent different weather types and design a Noise Indicator Fusion Module (NIFM). The NIFM takes both semantic features and the noise indicator as dual inputs and is inserted between consecutive stages of the encoder to embed weather-aware priors via adaptive feature modulation. Critically, the proposed specific encoder retains compatibility with mainstream SOD decoders. Extensive experiments are conducted on the WXSOD dataset under varying training data scales (100%, 50%, 30% of the full training set), three encoder and seven decoder configurations. Results show that the proposed SOD framework (particularly the NIFM-enhanced specific encoder) improves segmentation accuracy under complex weather conditions compared to a vanilla encoder.
Efficient crop detection via Unmanned Aerial Vehicles is critical for scaling precision agriculture, yet it remains challenging due to the small scale of targets and environmental variability. This paper addresses the detection of rice seedlings in paddy fields by leveraging a Faster R-CNN architecture initialized via transfer learning. To overcome the specific difficulties of detecting minute objects in high-resolution aerial imagery, we curate a significant UAV dataset for training and rigorously evaluate the model's generalization capabilities. Specifically, we validate performance across three distinct test sets acquired at different temporal intervals, thereby assessing robustness against varying imaging conditions. Our empirical results demonstrate that transfer learning not only facilitates the rapid convergence of object detection models in agricultural contexts but also yields consistent performance despite domain shifts in image acquisition.
Comprehensive environment perception is essential for autonomous vehicles to operate safely. It is crucial to detect both dynamic road users and static objects like traffic signs or lanes as these are required for safe motion planning. However, in many circumstances a complete perception of other objects or lanes is not achievable due to limited sensor ranges, occlusions, and curves. In scenarios where an accurate localization is not possible or for roads where no HD maps are available, an autonomous vehicle must rely solely on its perceived road information. Thus, extending local sensing capabilities through collective perception using vehicle-to-vehicle communication is a promising strategy that has not yet been explored for lane detection. Therefore, we propose a real-time capable approach for collective perception of lanes using a spline-based estimation of undetected road sections. We evaluate our proposed fusion algorithm in various situations and road types. We were able to achieve real-time capability and extend the perception range by up to 200%.
Aerial object detection faces significant challenges in real-world scenarios, such as small objects and extensive background interference, which limit the performance of RGB-based detectors with insufficient discriminative information. Multispectral images (MSIs) capture additional spectral cues across multiple bands, offering a promising alternative. However, the lack of training data has been the primary bottleneck to exploiting the potential of MSIs. To address this gap, we introduce the first large-scale dataset for Multispectral Object Detection in Aerial images (MODA), which comprises 14,041 MSIs and 330,191 annotations across diverse, challenging scenarios, providing a comprehensive data foundation for this field. Furthermore, to overcome challenges inherent to aerial object detection using MSIs, we propose OSSDet, a framework that integrates spectral and spatial information with object-aware cues. OSSDet employs a cascaded spectral-spatial modulation structure to optimize target perception, aggregates spectrally related features by exploiting spectral similarities to reinforce intra-object correlations, and suppresses irrelevant background via object-aware masking. Moreover, cross-spectral attention further refines object-related representations under explicit object-aware guidance. Extensive experiments demonstrate that OSSDet outperforms existing methods with comparable parameters and efficiency.