Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Recent advances in multi-modal detection have significantly improved detection accuracy in challenging environments (e.g., low light, overexposure). By integrating RGB with modalities such as thermal and depth, multi-modal fusion increases data redundancy and system robustness. However, significant challenges remain in effectively extracting task-relevant information both within and across modalities, as well as in achieving precise cross-modal alignment. While CNNs excel at feature extraction, they are limited by constrained receptive fields, strong inductive biases, and difficulty in capturing long-range dependencies. Transformer-based models offer global context but suffer from quadratic computational complexity and are confined to pairwise correlation modeling. Mamba and other State Space Models (SSMs), on the other hand, are hindered by their sequential scanning mechanism, which flattens 2D spatial structures into 1D sequences, disrupting topological relationships and limiting the modeling of complex higher-order dependencies. To address these issues, we propose a multi-modal perception network based on hypergraph theory called M2I2HA. Our architecture includes an Intra-Hypergraph Enhancement module to capture global many-to-many high-order relationships within each modality, and an Inter-Hypergraph Fusion module to align, enhance, and fuse cross-modal features by bridging configuration and spatial gaps between data sources. We further introduce a M2-FullPAD module to enable adaptive multi-level fusion of multi-modal enhanced features within the network, meanwhile enhancing data distribution and flow across the architecture. Extensive object detection experiments on multiple public datasets against baselines demonstrate that M2I2HA achieves state-of-the-art performance in multi-modal object detection tasks.
Sustainability reports are critical for ESG assessment, yet greenwashing and vague claims often undermine their reliability. Existing NLP models lack robustness to these practices, typically relying on surface-level patterns that generalize poorly. We propose a parameter-efficient framework that structures LLM latent spaces by combining contrastive learning with an ordinal ranking objective to capture graded distinctions between concrete actions and ambiguous claims. Our approach incorporates gated feature modulation to filter disclosure noise and utilizes MetaGradNorm to stabilize multi-objective optimization. Experiments in cross-category settings demonstrate superior robustness over standard baselines while revealing a trade-off between representational rigidity and generalization.
Current mobile manipulation research predominantly follows an instruction-driven paradigm, where agents rely on predefined textual commands to execute tasks. However, this setting confines agents to a passive role, limiting their autonomy and ability to react to dynamic environmental events. To address these limitations, we introduce sound-triggered mobile manipulation, where agents must actively perceive and interact with sound-emitting objects without explicit action instructions. To support these tasks, we develop Habitat-Echo, a data platform that integrates acoustic rendering with physical interaction. We further propose a baseline comprising a high-level task planner and low-level policy models to complete these tasks. Extensive experiments show that the proposed baseline empowers agents to actively detect and respond to auditory events, eliminating the need for case-by-case instructions. Notably, in the challenging dual-source scenario, the agent successfully isolates the primary source from overlapping acoustic interference to execute the first interaction, and subsequently proceeds to manipulate the secondary object, verifying the robustness of the baseline.
Reinforcement learning (RL) has emerged as a powerful framework for improving the reasoning capabilities of large language models (LLMs). However, most existing RL approaches rely on sparse outcome rewards, which fail to credit correct intermediate steps in partially successful solutions. Process reward models (PRMs) offer fine-grained step-level supervision, but their scores are often noisy and difficult to evaluate. As a result, recent PRM benchmarks focus on a more objective capability: detecting the first incorrect step in a reasoning path. However, this evaluation target is misaligned with how PRMs are typically used in RL, where their step-wise scores are treated as raw rewards to maximize. To bridge this gap, we propose Verifiable Prefix Policy Optimization (VPPO), which uses PRMs only to localize the first error during RL. Given an incorrect rollout, VPPO partitions the trajectory into a verified correct prefix and an erroneous suffix based on the first error, rewarding the former while applying targeted penalties only after the detected mistake. This design yields stable, interpretable learning signals and improves credit assignment. Across multiple reasoning benchmarks, VPPO consistently outperforms sparse-reward RL and prior PRM-guided baselines on both Pass@1 and Pass@K.
Despite recent Multimodal Large Language Models (MLLMs)' linguistic prowess in medical diagnosis, we find even state-of-the-art MLLMs suffer from a critical perceptual deficit: geometric blindness. This failure to ground outputs in objective geometric constraints leads to plausible yet factually incorrect hallucinations, rooted in training paradigms that prioritize linguistic fluency over geometric fidelity. This paper introduces Med-Scout, a novel framework that "cures" this blindness via Reinforcement Learning (RL) that leverages the intrinsic geometric logic latent within unlabeled medical images. Instead of relying on costly expert annotations, Med-Scout derives verifiable supervision signals through three strategic proxy tasks: Hierarchical Scale Localization, Topological Jigsaw Reconstruction, and Anomaly Consistency Detection. To rigorously quantify this deficit, we present Med-Scout-Bench, a new benchmark specifically designed to evaluate geometric perception. Extensive evaluations show that Med-Scout significantly mitigates geometric blindness, outperforming leading proprietary and open-source MLLMs by over 40% on our benchmark. Furthermore, this enhanced geometric perception generalizes to broader medical understanding, achieving superior results on radiological and comprehensive medical VQA tasks.
Internet memes have become pervasive carriers of digital culture on social platforms. However, their heavy reliance on metaphors and sociocultural context also makes them subtle vehicles for harmful content, posing significant challenges for automated content moderation. Existing approaches primarily focus on intra-modal and inter-modal signal analysis, while the understanding of implicit toxicity often depends on background knowledge that is not explicitly present in the meme itself. To address this challenge, we propose KID, a Knowledge-Injected Dual-Head Learning framework for knowledge-grounded harmful meme detection. KID adopts a label-constrained distillation paradigm to decompose complex meme understanding into structured reasoning chains that explicitly link visual evidence, background knowledge, and classification labels. These chains guide the learning process by grounding external knowledge in meme-specific contexts. In addition, KID employs a dual-head architecture that jointly optimizes semantic generation and classification objectives, enabling aligned linguistic reasoning while maintaining stable decision boundaries. Extensive experiments on five multilingual datasets spanning English, Chinese, and low-resource Bengali demonstrate that KID achieves SOTA performance on both binary and multi-label harmful meme detection tasks, improving over previous best methods by 2.1%--19.7% across primary evaluation metrics. Ablation studies further confirm the effectiveness of knowledge injection and dual-head joint learning, highlighting their complementary contributions to robust and generalizable meme understanding. The code and data are available at https://github.com/PotatoDog1669/KID.
Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike thresholdbased binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams (PDs) with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns PDs across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stabilityaware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D AS benchmarks.
Unmanned Aerial Vehicle (UAV) applications have become increasingly prevalent in aerial photography and object recognition. However, there are major challenges to accurately capturing small targets in object detection due to the imbalanced scale and the blurred edges. To address these issues, boundary and position information mining (BPIM) framework is proposed for capturing object edge and location cues. The proposed BPIM includes position information guidance (PIG) module for obtaining location information, boundary information guidance (BIG) module for extracting object edge, cross scale fusion (CSF) module for gradually assembling the shallow layer image feature, three feature fusion (TFF) module for progressively combining position and boundary information, and adaptive weight fusion (AWF) module for flexibly merging the deep layer semantic feature. Therefore, BPIM can integrate boundary, position, and scale information in image for small object detection using attention mechanisms and cross-scale feature fusion strategies. Furthermore, BPIM not only improves the discrimination of the contextual feature by adaptive weight fusion with boundary, but also enhances small object perceptions by cross-scale position fusion. On the VisDrone2021, DOTA1.0, and WiderPerson datasets, experimental results show the better performances of BPIM compared to the baseline Yolov5-P2, and obtains the promising performance in the state-of-the-art methods with comparable computation load.
Frontier language model agents can exhibit misaligned behaviors, including deception, exploiting reward hacks, and pursuing hidden objectives. To control potentially misaligned agents, we can use LLMs themselves to monitor for misbehavior. In this paper, we study how information access affects LLM monitor performance. While one might expect that monitors perform better when they have access to more of the monitored agents' reasoning and actions, we find that contemporary systems often perform better with less information, a phenomenon we call the less-is-more effect for automated oversight. We demonstrate this phenomenon, and analyze the conditions under which it occurs, in three evaluation environments where agents must conduct sabotage while evading monitors. Motivated by the less-is-more effect, we introduce extract-and-evaluate (EaE) monitoring--a new hierarchical approach where one monitor isolates relevant excerpts from the monitored agent's trajectory and a separate monitor scores them. In BigCodeBench-Sabotage with GPT-4.1-mini as the monitor model, EaE improves sabotage detection rates by 16.8 percentage points over the next-best monitor without increasing the false positive rate. In other settings, EaE either outperforms or is competitive with baselines. In addition, we find that agents unaware of being monitored can be caught much more easily and that monitors scoring longer reasoning traces gain more from information filtering. Lastly, we conduct a cost-performance analysis and find that Gemini and Claude models with monitoring techniques that involve information filtering occupy much of the Pareto frontier.
The prevalence of sarcasm in multimodal dialogues on the social platforms presents a crucial yet challenging task for understanding the true intent behind online content. Comprehensive sarcasm analysis requires two key aspects: Multimodal Sarcasm Detection (MSD) and Multimodal Sarcasm Explanation (MuSE). Intuitively, the act of detection is the result of the reasoning process that explains the sarcasm. Current research predominantly focuses on addressing either MSD or MuSE as a single task. Even though some recent work has attempted to integrate these tasks, their inherent causal dependency is often overlooked. To bridge this gap, we propose MuVaC, a variational causal inference framework that mimics human cognitive mechanisms for understanding sarcasm, enabling robust multimodal feature learning to jointly optimize MSD and MuSE. Specifically, we first model MSD and MuSE from the perspective of structural causal models, establishing variational causal pathways to define the objectives for joint optimization. Next, we design an alignment-then-fusion approach to integrate multimodal features, providing robust fusion representations for sarcasm detection and explanation generation. Finally, we enhance the reasoning trustworthiness by ensuring consistency between detection results and explanations. Experimental results demonstrate the superiority of MuVaC in public datasets, offering a new perspective for understanding multimodal sarcasm.