Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Large Vision-Language Models (LVLMs) have made significant strides in image caption, visual question answering, and robotics by integrating visual and textual information. However, they remain prone to errors in incongruous contexts, where objects appear unexpectedly or are absent when contextually expected. This leads to two key recognition failures: object misidentification and hallucination. To systematically examine this issue, we introduce the Object Recognition in Incongruous Context Benchmark (ORIC), a novel benchmark that evaluates LVLMs in scenarios where object-context relationships deviate from expectations. ORIC employs two key strategies: (1) LLM-guided sampling, which identifies objects that are present but contextually incongruous, and (2) CLIP-guided sampling, which detects plausible yet nonexistent objects that are likely to be hallucinated, thereby creating an incongruous context. Evaluating 18 LVLMs and two open-vocabulary detection models, our results reveal significant recognition gaps, underscoring the challenges posed by contextual incongruity. This work provides critical insights into LVLMs' limitations and encourages further research on context-aware object recognition.
In this paper, we present SegDINO3D, a novel Transformer encoder-decoder framework for 3D instance segmentation. As 3D training data is generally not as sufficient as 2D training images, SegDINO3D is designed to fully leverage 2D representation from a pre-trained 2D detection model, including both image-level and object-level features, for improving 3D representation. SegDINO3D takes both a point cloud and its associated 2D images as input. In the encoder stage, it first enriches each 3D point by retrieving 2D image features from its corresponding image views and then leverages a 3D encoder for 3D context fusion. In the decoder stage, it formulates 3D object queries as 3D anchor boxes and performs cross-attention from 3D queries to 2D object queries obtained from 2D images using the 2D detection model. These 2D object queries serve as a compact object-level representation of 2D images, effectively avoiding the challenge of keeping thousands of image feature maps in the memory while faithfully preserving the knowledge of the pre-trained 2D model. The introducing of 3D box queries also enables the model to modulate cross-attention using the predicted boxes for more precise querying. SegDINO3D achieves the state-of-the-art performance on the ScanNetV2 and ScanNet200 3D instance segmentation benchmarks. Notably, on the challenging ScanNet200 dataset, SegDINO3D significantly outperforms prior methods by +8.7 and +6.8 mAP on the validation and hidden test sets, respectively, demonstrating its superiority.
Computer-assisted pronunciation training (CAPT) manages to facilitate second-language (L2) learners to practice pronunciation skills by offering timely and instructive feedback. To examine pronunciation proficiency from multiple facets, existing methods for CAPT broadly fall into two categories: mispronunciation detection and diagnosis (MDD) as well as automatic pronunciation assessment (APA). The former aims to pinpoint phonetic pronunciation errors and provide diagnostic feedback, while the latter seeks instead to quantify pronunciation proficiency pertaining to various aspects. Despite the natural complementarity between MDD and APA, researchers and practitioners, however, often treat them as independent tasks with disparate modeling paradigms. In light of this, we in this paper first introduce MuFFIN, a Multi-Faceted pronunciation Feedback model with an Interactive hierarchical Neural architecture, to jointly address the tasks of MDD and APA. To better capture the nuanced distinctions between phonemes in the feature space, a novel phoneme-contrastive ordinal regularization mechanism is then put forward to optimize the proposed model to generate more phoneme-discriminative features while factoring in the ordinality of the aspect scores. In addition, to address the intricate data imbalance problem in MDD, we design a simple yet effective training objective, which is specifically tailored to perturb the outputs of a phoneme classifier with the phoneme-specific variations, so as to better render the distribution of predicted phonemes meanwhile considering their mispronunciation characteristics. A series of experiments conducted on the Speechocean762 benchmark dataset demonstrates the efficacy of our method in relation to several cutting-edge baselines, showing state-of-the-art performance on both the APA and MDD tasks.
The rapid spread of misinformation on social media underscores the need for scalable fact-checking tools. A key step is claim detection, which identifies statements that can be objectively verified. Prior approaches often rely on linguistic cues or claim check-worthiness, but these struggle with vague political discourse and diverse formats such as tweets. We present RAVE (Retrieval and Scoring Aware Verifiable Claim Detection), a framework that combines evidence retrieval with structured signals of relevance and source credibility. Experiments on CT22-test and PoliClaim-test show that RAVE consistently outperforms text-only and retrieval-based baselines in both accuracy and F1.
Recent advances in autonomous driving have underscored the importance of accurate 3D object detection, with LiDAR playing a central role due to its robustness under diverse visibility conditions. However, different vehicle platforms often deploy distinct sensor configurations, causing performance degradation when models trained on one configuration are applied to another because of shifts in the point cloud distribution. Prior work on multi-dataset training and domain adaptation for 3D object detection has largely addressed environmental domain gaps and density variation within a single LiDAR; in contrast, the domain gap for different sensor configurations remains largely unexplored. In this work, we address domain adaptation across different sensor configurations in 3D object detection. We propose two techniques: Downstream Fine-tuning (dataset-specific fine-tuning after multi-dataset training) and Partial Layer Fine-tuning (updating only a subset of layers to improve cross-configuration generalization). Using paired datasets collected in the same geographic region with multiple sensor configurations, we show that joint training with Downstream Fine-tuning and Partial Layer Fine-tuning consistently outperforms naive joint training for each configuration. Our findings provide a practical and scalable solution for adapting 3D object detection models to the diverse vehicle platforms.
This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.
Road traffic accidents remain a significant global concern, with human error, particularly distracted and impaired driving, among the leading causes. This study introduces a novel driver behavior classification system that uses external observation techniques to detect indicators of distraction and impairment. The proposed framework employs advanced computer vision methodologies, including real-time object tracking, lateral displacement analysis, and lane position monitoring. The system identifies unsafe driving behaviors such as excessive lateral movement and erratic trajectory patterns by implementing the YOLO object detection model and custom lane estimation algorithms. Unlike systems reliant on inter-vehicular communication, this vision-based approach enables behavioral analysis of non-connected vehicles. Experimental evaluations on diverse video datasets demonstrate the framework's reliability and adaptability across varying road and environmental conditions.
Joint source-channel coding is a compelling paradigm when low-latency and low-complexity communication is required. This work proposes a theoretical framework that integrates classification and anomaly detection within the conventional signal reconstruction objective. Assuming a Gaussian scalar source and constraining the encoder to piecewise linear mappings, we derive tractable design rules and explicitly characterize the trade-offs between distortion, classification error, and transmission power.




Object detection is fundamental to various real-world applications, such as security monitoring and surveillance video analysis. Despite their advancements, state-of-theart object detectors are still vulnerable to adversarial patch attacks, which can be easily applied to real-world objects to either conceal actual items or create non-existent ones, leading to severe consequences. Given the current diversity of adversarial patch attacks and potential unknown threats, an ideal defense method should be effective, generalizable, and robust against adaptive attacks. In this work, we introduce DISPATCH, the first diffusion-based defense framework for object detection. Unlike previous works that aim to "detect and remove" adversarial patches, DISPATCH adopts a "regenerate and rectify" strategy, leveraging generative models to disarm attack effects while preserving the integrity of the input image. Specifically, we utilize the in-distribution generative power of diffusion models to regenerate the entire image, aligning it with benign data. A rectification process is then employed to identify and replace adversarial regions with their regenerated benign counterparts. DISPATCH is attack-agnostic and requires no prior knowledge of the existing patches. Extensive experiments across multiple detectors and attacks demonstrate that DISPATCH consistently outperforms state-of-the-art defenses on both hiding attacks and creating attacks, achieving the best overall mAP.5 score of 89.3% on hiding attacks, and lowering the attack success rate to 24.8% on untargeted creating attacks. Moreover, it maintains strong robustness against adaptive attacks, making it a practical and reliable defense for object detection systems.
Underwater Camouflaged Object Detection (UCOD) aims to identify objects that blend seamlessly into underwater environments. This task is critically important to marine ecology. However, it remains largely underexplored and accurate identification is severely hindered by optical distortions, water turbidity, and the complex traits of marine organisms. To address these challenges, we introduce the UCOD task and present DeepCamo, a benchmark dataset designed for this domain. We also propose Semantic Localization and Enhancement Network (SLENet), a novel framework for UCOD. We first benchmark state-of-the-art COD models on DeepCamo to reveal key issues, upon which SLENet is built. In particular, we incorporate Gamma-Asymmetric Enhancement (GAE) module and a Localization Guidance Branch (LGB) to enhance multi-scale feature representation while generating a location map enriched with global semantic information. This map guides the Multi-Scale Supervised Decoder (MSSD) to produce more accurate predictions. Experiments on our DeepCamo dataset and three benchmark COD datasets confirm SLENet's superior performance over SOTA methods, and underscore its high generality for the broader COD task.