In real-world scenarios, the performance of semantic segmentation often deteriorates when processing low-quality (LQ) images, which may lack clear semantic structures and high-frequency details. Although image restoration techniques offer a promising direction for enhancing degraded visual content, conventional real-world image restoration (Real-IR) models primarily focus on pixel-level fidelity and often fail to recover task-relevant semantic cues, limiting their effectiveness when directly applied to downstream vision tasks. Conversely, existing segmentation models trained on high-quality data lack robustness under real-world degradations. In this paper, we propose Restoration Adaptation for Semantic Segmentation (RASS), which effectively integrates semantic image restoration into the segmentation process, enabling high-quality semantic segmentation on the LQ images directly. Specifically, we first propose a Semantic-Constrained Restoration (SCR) model, which injects segmentation priors into the restoration model by aligning its cross-attention maps with segmentation masks, encouraging semantically faithful image reconstruction. Then, RASS transfers semantic restoration knowledge into segmentation through LoRA-based module merging and task-specific fine-tuning, thereby enhancing the model's robustness to LQ images. To validate the effectiveness of our framework, we construct a real-world LQ image segmentation dataset with high-quality annotations, and conduct extensive experiments on both synthetic and real-world LQ benchmarks. The results show that SCR and RASS significantly outperform state-of-the-art methods in segmentation and restoration tasks. Code, models, and datasets will be available at https://github.com/Ka1Guan/RASS.git.
Image editing has achieved impressive results with the development of large-scale generative models. However, existing models mainly focus on the editing effects of intended objects and regions, often leading to unwanted changes in unintended regions. We present a post-training framework for Content-Consistent Editing (CoCoEdit) via region regularized reinforcement learning. We first augment existing editing datasets with refined instructions and masks, from which 40K diverse and high quality samples are curated as training set. We then introduce a pixel-level similarity reward to complement MLLM-based rewards, enabling models to ensure both editing quality and content consistency during the editing process. To overcome the spatial-agnostic nature of the rewards, we propose a region-based regularizer, aiming to preserve non-edited regions for high-reward samples while encouraging editing effects for low-reward samples. For evaluation, we annotate editing masks for GEdit-Bench and ImgEdit-Bench, introducing pixel-level similarity metrics to measure content consistency and editing quality. Applying CoCoEdit to Qwen-Image-Edit and FLUX-Kontext, we achieve not only competitive editing scores with state-of-the-art models, but also significantly better content consistency, measured by PSNR/SSIM metrics and human subjective ratings.
Single-image 3D reconstruction with large reconstruction models (LRMs) has advanced rapidly, yet reconstructions often exhibit geometric inconsistencies and misaligned details that limit fidelity. We introduce GeoFusionLRM, a geometry-aware self-correction framework that leverages the model's own normal and depth predictions to refine structural accuracy. Unlike prior approaches that rely solely on features extracted from the input image, GeoFusionLRM feeds back geometric cues through a dedicated transformer and fusion module, enabling the model to correct errors and enforce consistency with the conditioning image. This design improves the alignment between the reconstructed mesh and the input views without additional supervision or external signals. Extensive experiments demonstrate that GeoFusionLRM achieves sharper geometry, more consistent normals, and higher fidelity than state-of-the-art LRM baselines.
Data-driven approaches like deep learning are rapidly advancing planetary science, particularly in Mars exploration. Despite recent progress, most existing benchmarks remain confined to closed-set supervised visual tasks and do not support text-guided retrieval for geospatial discovery. We introduce MarsRetrieval, a retrieval benchmark for evaluating vision-language models for Martian geospatial discovery. MarsRetrieval includes three tasks: (1) paired image-text retrieval, (2) landform retrieval, and (3) global geo-localization, covering multiple spatial scales and diverse geomorphic origins. We propose a unified retrieval-centric protocol to benchmark multimodal embedding architectures, including contrastive dual-tower encoders and generative vision-language models. Our evaluation shows MarsRetrieval is challenging: even strong foundation models often fail to capture domain-specific geomorphic distinctions. We further show that domain-specific fine-tuning is critical for generalizable geospatial discovery in planetary settings. Our code is available at https://github.com/ml-stat-Sustech/MarsRetrieval
Purpose: Precise port placement is a critical step in robot-assisted surgery, where port configuration influences both visual access to the operative field and instrument maneuverability. To bridge the gap between preoperative planning and intraoperative execution, we present ARport, an augmented reality (AR) system that automatically maps pre-planned trocar layouts onto the patient's body surface, providing intuitive spatial guidance during surgical preparation. Methods: ARport, implemented on an optical see-through head-mounted display (OST-HMD), operates without any external sensors or markers, simplifying setup and enhancing workflow integration. It reconstructs the operative scene from RGB, depth, and pose data captured by the OST-HMD, extracts the patient's body surface using a foundation model, and performs surface-based markerless registration to align preoperative anatomical models to the extracted patient's body surface, enabling in-situ visualization of planned trocar layouts. A demonstration video illustrating the overall workflow is available online. Results: In full-scale human-phantom experiments, ARport accurately overlaid pre-planned trocar sites onto the physical phantom, achieving consistent spatial correspondence between virtual plans and real anatomy. Conclusion: ARport provides a fully marker-free and hardware-minimal solution for visualizing preoperative trocar plans directly on the patient's body surface. The system facilitates efficient intraoperative setup and demonstrates potential for seamless integration into routine clinical workflows.
Existing multimodal document question answering methods universally adopt a supply-side ingestion strategy: running a Vision-Language Model (VLM) on every page during indexing to generate comprehensive descriptions, then answering questions through text retrieval. However, this "pre-ingestion" approach is costly (a 113-page engineering drawing package requires approximately 80,000 VLM tokens), end-to-end unreliable (VLM outputs may fail to be correctly retrieved due to format mismatches in the retrieval infrastructure), and irrecoverable once it fails. This paper proposes the Deferred Visual Ingestion (DVI) framework, adopting a demand-side ingestion strategy: the indexing phase performs only lightweight metadata extraction, deferring visual understanding to the moment users pose specific questions. DVI's core principle is "Index for locating, not understanding"--achieving page localization through structured metadata indexes and BM25 full-text search, then sending original images along with specific questions to a VLM for targeted analysis. Experiments on two real industrial engineering drawings (113 pages + 7 pages) demonstrate that DVI achieves comparable overall accuracy at zero ingestion VLM cost (46.7% vs. 48.9%), an effectiveness rate of 50% on visually necessary queries (vs. 0% for pre-ingestion), and 100% page localization (98% search space compression). DVI also supports interactive refinement and progressive caching, transforming the "QA accuracy" problem into a "page localization" problem--once the correct drawing page is found, obtaining the answer becomes a matter of interaction rounds.
Breast cancer screening programmes increasingly seek to move from one-size-fits-all interval to risk-adapted and personalized strategies. Deep learning (DL) has enabled image-based risk models with stronger 1- to 5-year prediction than traditional clinical models, but leading systems (e.g., Mirai) typically use convolutional backbones, very high-resolution inputs (>1M pixels) and simple multi-view fusion, with limited explicit modelling of contralateral asymmetry. We hypothesised that combining complementary inductive biases (convolutional and transformer-based) with explicit contralateral asymmetry modelling would allow us to match state-of-the-art 3-year risk prediction performance even when operating on substantially lower-resolution mammograms, indicating that using less detailed images in a more structured way can recover state-of-the-art accuracy. We present MamaDino, a mammography-aware multi-view attentional DINO model. MamaDino fuses frozen self-supervised DINOv3 ViT-S features with a trainable CNN encoder at 512x512 resolution, and aggregates bilateral breast information via a BilateralMixer to output a 3-year breast cancer risk score. We train on 53,883 women from OPTIMAM (UK) and evaluate on matched 3-year case-control cohorts: an in-distribution test set from four screening sites and an external out-of-distribution cohort from an unseen site. At breast-level, MamaDino matches Mirai on both internal and external tests while using ~13x fewer input pixels. Adding the BilateralMixer improves discrimination to AUC 0.736 (vs 0.713) in-distribution and 0.677 (vs 0.666) out-of-distribution, with consistent performance across age, ethnicity, scanner, tumour type and grade. These findings demonstrate that explicit contralateral modelling and complementary inductive biases enable predictions that match Mirai, despite operating on substantially lower-resolution mammograms.
Ultrasound denoising is essential for mitigating speckle-induced degradations, thereby enhancing image quality and improving diagnostic reliability. Nevertheless, because speckle patterns inherently encode both texture and fine anatomical details, effectively suppressing noise while preserving structural fidelity remains a significant challenge. In this study, we propose a prior-guided hierarchical instance-pixel contrastive learning model for ultrasound denoising, designed to promote noise-invariant and structure-aware feature representations by maximizing the separability between noisy and clean samples at both pixel and instance levels. Specifically, a statistics-guided pixel-level contrastive learning strategy is introduced to enhance distributional discrepancies between noisy and clean pixels, thereby improving local structural consistency. Concurrently, a memory bank is employed to facilitate instance-level contrastive learning in the feature space, encouraging representations that more faithfully approximate the underlying data distribution. Furthermore, a hybrid Transformer-CNN architecture is adopted, coupling a Transformer-based encoder for global context modeling with a CNN-based decoder optimized for fine-grained anatomical structure restoration, thus enabling complementary exploitation of long-range dependencies and local texture details. Extensive evaluations on two publicly available ultrasound datasets demonstrate that the proposed model consistently outperforms existing methods, confirming its effectiveness and superiority.
Recent advances in satellite and communication technologies have significantly improved geographical information and monitoring systems. Global System for Mobile Communications (GSM) and Global Navigation Satellite System (GNSS) technologies, which rely on electromagnetic signals transmitted from satellites and base stations, have long been utilized for geolocation applications. However, signal attenuation due to environmental conditions or intentional interference such as jamming may lead to severe degradation or complete loss of positioning capability. In such GNSS-denied environments, landmark extraction becomes critical for the navigation of unmanned aerial vehicles (UAVs) used in monitoring applications. By processing images captured from onboard UAV cameras, reliable visual landmarks can be identified to enable navigation without GNSS support. In this study, a convolution-based deep learning approach is proposed for the extraction of appropriate landmarks, and its effectiveness is examined.
Untrained neural networks (UNNs) offer high-fidelity electromagnetic inverse scattering reconstruction but are computationally limited by high-dimensional spatial-domain optimization. We propose a Real-Time Physics-Driven Fourier-Spectral (PDF) solver that achieves sub-second reconstruction through spectral-domain dimensionality reduction. By expanding induced currents using a truncated Fourier basis, the optimization is confined to a compact low-frequency parameter space supported by scattering measurements. The solver integrates a contraction integral equation (CIE) to mitigate high-contrast nonlinearity and a contrast-compensated operator (CCO) to correct spectral-induced attenuation. Furthermore, a bridge-suppressing loss is formulated to enhance boundary sharpness between adjacent scatterers. Numerical and experimental results demonstrate a 100-fold speedup over state-of-the-art UNNs with robust performance under noise and antenna uncertainties, enabling real-time microwave imaging applications.