Current analysis of additive manufactured niobium-based copper alloys relies on hand annotation due to varying contrast, noise, and image artifacts present in micrographs, slowing iteration speed in alloy development. We present a filtering and segmentation algorithm for detecting precipitates in FIB cross-section micrographs, optimized using linear genetic programming (LGP), which accounts for the various artifacts. To this end, the optimization environment uses a domain-specific language for image processing to iterate on solutions. Programs in this language are a list of image-filtering blocks with tunable parameters that sequentially process an input image, allowing for reliable generation and mutation by a genetic algorithm. Our environment produces optimized human-interpretable MATLAB code representing an image filtering pipeline. Under ideal conditions--a population size of 60 and a maximum program length of 5 blocks--our system was able to find a near-human accuracy solution with an average evaluation error of 1.8% when comparing segmentations pixel-by-pixel to a human baseline using an XOR error evaluation. Our automation work enabled faster iteration cycles and furthered exploration of the material composition and processing space: our optimized pipeline algorithm processes a 3.6 megapixel image in about 2 seconds on average. This ultimately enables convergence on strong, low-activation, precipitation hardened copper alloys for additive manufactured fusion reactor parts.
High Dynamic Range (HDR) video reconstruction aims to recover fine brightness, color, and details from Low Dynamic Range (LDR) videos. However, existing methods often suffer from color inaccuracies and temporal inconsistencies. To address these challenges, we propose WMNet, a novel HDR video reconstruction network that leverages Wavelet domain Masked Image Modeling (W-MIM). WMNet adopts a two-phase training strategy: In Phase I, W-MIM performs self-reconstruction pre-training by selectively masking color and detail information in the wavelet domain, enabling the network to develop robust color restoration capabilities. A curriculum learning scheme further refines the reconstruction process. Phase II fine-tunes the model using the pre-trained weights to improve the final reconstruction quality. To improve temporal consistency, we introduce the Temporal Mixture of Experts (T-MoE) module and the Dynamic Memory Module (DMM). T-MoE adaptively fuses adjacent frames to reduce flickering artifacts, while DMM captures long-range dependencies, ensuring smooth motion and preservation of fine details. Additionally, since existing HDR video datasets lack scene-based segmentation, we reorganize HDRTV4K into HDRTV4K-Scene, establishing a new benchmark for HDR video reconstruction. Extensive experiments demonstrate that WMNet achieves state-of-the-art performance across multiple evaluation metrics, significantly improving color fidelity, temporal coherence, and perceptual quality. The code is available at: https://github.com/eezkni/WMNet
Tabular data is frequently captured in image form across a wide range of real-world scenarios such as financial reports, handwritten records, and document scans. These visual representations pose unique challenges for machine understanding, as they combine both structural and visual complexities. While recent advances in Multimodal Large Language Models (MLLMs) show promising results in table understanding, they typically assume the relevant table is readily available. However, a more practical scenario involves identifying and reasoning over relevant tables from large-scale collections to answer user queries. To address this gap, we propose TabRAG, a framework that enables MLLMs to answer queries over large collections of table images. Our approach first retrieves candidate tables using jointly trained visual-text foundation models, then leverages MLLMs to perform fine-grained reranking of these candidates, and finally employs MLLMs to reason over the selected tables for answer generation. Through extensive experiments on a newly constructed dataset comprising 88,161 training and 9,819 testing samples across 8 benchmarks with 48,504 unique tables, we demonstrate that our framework significantly outperforms existing methods by 7.0% in retrieval recall and 6.1% in answer accuracy, offering a practical solution for real-world table understanding tasks.
Universal Multimodal embedding models built on Multimodal Large Language Models (MLLMs) have traditionally employed contrastive learning, which aligns representations of query-target pairs across different modalities. Yet, despite its empirical success, they are primarily built on a "single-turn" formulation where each query-target pair is treated as an independent data point. This paradigm leads to computational inefficiency when scaling, as it requires a separate forward pass for each pair and overlooks potential contextual relationships between multiple queries that can relate to the same context. In this work, we introduce Multi-Turn Contrastive Learning (MuCo), a dialogue-inspired framework that revisits this process. MuCo leverages the conversational nature of MLLMs to process multiple, related query-target pairs associated with a single image within a single forward pass. This allows us to extract a set of multiple query and target embeddings simultaneously, conditioned on a shared context representation, amplifying the effective batch size and overall training efficiency. Experiments exhibit MuCo with a newly curated 5M multimodal multi-turn dataset (M3T), which yields state-of-the-art retrieval performance on MMEB and M-BEIR benchmarks, while markedly enhancing both training efficiency and representation coherence across modalities. Code and M3T are available at https://github.com/naver-ai/muco
Early clinical assessment of Alzheimer's disease relies on behavior scores that measure a subject's language, memory, and cognitive skills. On the medical imaging side, functional magnetic resonance imaging has provided invaluable insights into the neural pathways underlying Alzheimer's disease. While prior studies have used resting-state functional MRI by extracting functional connectivity matrices, these approaches neglect the temporal dynamics inherent in functional data. In this work, we present a deep state space modeling framework that directly leverages the blood-oxygenation-level-dependent time series to learn a sparse collection of brain regions to predict behavior scores. Our model extracts temporal features that encapsulate nuanced patterns of intrinsic brain activity, thereby enhancing predictive performance compared to traditional connectivity methods. We identify specific brain regions that are most predictive of cognitive impairment through experiments on data provided by the Michigan Alzheimer's Disease Research Center, providing new insights into the neural substrates of early Alzheimer's pathology. These findings have important implications for the possible development of risk monitoring and intervention strategies in Alzheimer's disease.
The classification performance of deep neural networks relies strongly on access to large, accurately annotated datasets. In medical imaging, however, obtaining such datasets is particularly challenging since annotations must be provided by specialized physicians, which severely limits the pool of annotators. Furthermore, class boundaries can often be ambiguous or difficult to define which further complicates machine learning-based classification. In this paper, we want to address this problem and introduce a framework for mislabel detection in medical datasets. This is validated on the two largest, publicly available datasets for Video Capsule Endoscopy, an important imaging procedure for examining the gastrointestinal tract based on a video stream of lowresolution images. In addition, potentially mislabeled samples identified by our pipeline were reviewed and re-annotated by three experienced gastroenterologists. Our results show that the proposed framework successfully detects incorrectly labeled data and results in an improved anomaly detection performance after cleaning the datasets compared to current baselines.
While large-scale text-to-image diffusion models continue to improve in visual quality, their increasing scale has widened the gap between state-of-the-art models and on-device solutions. To address this gap, we introduce NanoFLUX, a 2.4B text-to-image flow-matching model distilled from 17B FLUX.1-Schnell using a progressive compression pipeline designed to preserve generation quality. Our contributions include: (1) A model compression strategy driven by pruning redundant components in the diffusion transformer, reducing its size from 12B to 2B; (2) A ResNet-based token downsampling mechanism that reduces latency by allowing intermediate blocks to operate on lower-resolution tokens while preserving high-resolution processing elsewhere; (3) A novel text encoder distillation approach that leverages visual signals from early layers of the denoiser during sampling. Empirically, NanoFLUX generates 512 x 512 images in approximately 2.5 seconds on mobile devices, demonstrating the feasibility of high-quality on-device text-to-image generation.
Fetal echocardiography is essential for detecting congenital heart disease (CHD), facilitating pregnancy management, optimized delivery planning, and timely postnatal interventions. Among standard imaging planes, the four-chamber (4CH) view provides comprehensive information for CHD diagnosis, where clinicians carefully inspect the end-diastolic (ED) and end-systolic (ES) phases to evaluate cardiac structure and motion. Automated detection of these cardiac phases is thus a critical component toward fully automated CHD analysis. Yet, in the absence of fetal electrocardiography (ECG), manual identification of ED and ES frames remains a labor-intensive bottleneck. We present ORBIT (Orientation-Robust Beat Inference from Trajectories), a self-supervised framework that identifies cardiac phases without manual annotations under various fetal heart orientation. ORBIT employs registration as self-supervision task and learns a latent motion trajectory of cardiac deformation, whose turning points capture transitions between cardiac relaxation and contraction, enabling accurate and orientation-robust localization of ED and ES frames across diverse fetal positions. Trained exclusively on normal fetal echocardiography videos, ORBIT achieves consistent performance on both normal (MAE = 1.9 frames for ED and 1.6 for ES) and CHD cases (MAE = 2.4 frames for ED and 2.1 for ES), outperforming existing annotation-free approaches constrained by fixed orientation assumptions. These results highlight the potential of ORBIT to facilitate robust cardiac phase detection directly from 4CH fetal echocardiography.
Weight initialization plays a crucial role in the optimization behavior and convergence efficiency of neural networks. Most existing initialization methods, such as Xavier and Kaiming initializations, rely on random sampling and do not exploit information from the optimization process itself. We propose a simple, yet effective, initialization strategy based on self-supervised pre-training using random noise as the target. Instead of directly training the network from random weights, we first pre-train it to fit random noise, which leads to a structured and non-random parameter configuration. We show that this noise-driven pre-training significantly improves convergence speed in subsequent tasks, without requiring additional data or changes to the network architecture. The proposed method is particularly effective for implicit neural representations (INRs) and Deep Image Prior (DIP)-style networks, which are known to exhibit a strong low-frequency bias during optimization. After noise-based pre-training, the network is able to capture high-frequency components much earlier in training, leading to faster and more stable convergence. Although random noise contains no semantic information, it serves as an effective self-supervised signal (considering its white spectrum nature) for shaping the initialization of neural networks. Overall, this work demonstrates that noise-based pre-training offers a lightweight and general alternative to traditional random initialization, enabling more efficient optimization of deep neural networks.
Despite recent successes, test-time scaling - i.e., dynamically expanding the token budget during inference as needed - remains brittle for vision-language models (VLMs): unstructured chains-of-thought about images entangle perception and reasoning, leading to long, disorganized contexts where small perceptual mistakes may cascade into completely wrong answers. Moreover, expensive reinforcement learning with hand-crafted rewards is required to achieve good performance. Here, we introduce SPARC (Separating Perception And Reasoning Circuits), a modular framework that explicitly decouples visual perception from reasoning. Inspired by sequential sensory-to-cognitive processing in the brain, SPARC implements a two-stage pipeline where the model first performs explicit visual search to localize question-relevant regions, then conditions its reasoning on those regions to produce the final answer. This separation enables independent test-time scaling with asymmetric compute allocation (e.g., prioritizing perceptual processing under distribution shift), supports selective optimization (e.g., improving the perceptual stage alone when it is the bottleneck for end-to-end performance), and accommodates compressed contexts by running global search at lower image resolutions and allocating high-resolution processing only to selected regions, thereby reducing total visual tokens count and compute. Across challenging visual reasoning benchmarks, SPARC outperforms monolithic baselines and strong visual-grounding approaches. For instance, SPARC improves the accuracy of Qwen3VL-4B on the $V^*$ VQA benchmark by 6.7 percentage points, and it surpasses "thinking with images" by 4.6 points on a challenging OOD task despite requiring a 200$\times$ lower token budget.