Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.




Large language models (LLMs) are increasingly consulted by parents for pediatric guidance, yet their safety under real-world adversarial pressures is poorly understood. Anxious parents often use urgent language that can compromise model safeguards, potentially causing harmful advice. PediatricAnxietyBench is an open-source benchmark of 300 high-quality queries across 10 pediatric topics (150 patient-derived, 150 adversarial) enabling reproducible evaluation. Two Llama models (70B and 8B) were assessed using a multi-dimensional safety framework covering diagnostic restraint, referral adherence, hedging, and emergency recognition. Adversarial queries incorporated parental pressure patterns, including urgency, economic barriers, and challenges to disclaimers. Mean safety score was 5.50/15 (SD=2.41). The 70B model outperformed the 8B model (6.26 vs 4.95, p<0.001) with lower critical failures (4.8% vs 12.0%, p=0.02). Adversarial queries reduced safety by 8% (p=0.03), with urgency causing the largest drop (-1.40). Vulnerabilities appeared in seizures (33.3% inappropriate diagnosis) and post-vaccination queries. Hedging strongly correlated with safety (r=0.68, p<0.001), while emergency recognition was absent. Model scale influences safety, yet all models showed vulnerabilities to realistic parental pressures. PediatricAnxietyBench provides a reusable adversarial evaluation framework to reveal clinically significant failure modes overlooked by standard benchmarks.
Forensic scientists often need to identify an unknown speaker or writer in cases such as ransom calls, covert recordings, alleged suicide notes, or anonymous online communications, among many others. Speaker recognition in the speech domain usually examines phonetic or acoustic properties of a voice, and these methods can be accurate and robust under certain conditions. However, if a speaker disguises their voice or employs text-to-speech software, vocal properties may no longer be reliable, leaving only their linguistic content available for analysis. Authorship attribution methods traditionally use syntactic, semantic, and related linguistic information to identify writers of written text (authorship attribution). In this paper, we apply a content-based authorship approach to speech that has been transcribed into text, using what a speaker says to attribute speech to individuals (speaker attribution). We introduce a stylometric method, StyloSpeaker, which incorporates character, word, token, sentence, and style features from the stylometric literature on authorship, to assess whether two transcripts were produced by the same speaker. We evaluate this method on two types of transcript formatting: one approximating prescriptive written text with capitalization and punctuation and another normalized style that removes these conventions. The transcripts' conversation topics are also controlled to varying degrees. We find generally higher attribution performance on normalized transcripts, except under the strongest topic control condition, in which overall performance is highest. Finally, we compare this more explainable stylometric model to black-box neural approaches on the same data and investigate which stylistic features most effectively distinguish speakers.
Large-language models (LLMs) have been shown to respond in a variety of ways for classification tasks outside of question-answering. LLM responses are sometimes called "hallucinations" since the output is not what is ex pected. Memorization strategies in LLMs are being studied in detail, with the goal of understanding how LLMs respond. We perform a deep dive into a classification task based on United States Supreme Court (SCOTUS) decisions. The SCOTUS corpus is an ideal classification task to study for LLM memory accuracy because it presents significant challenges due to extensive sentence length, complex legal terminology, non-standard structure, and domain-specific vocabulary. Experimentation is performed with the latest LLM fine tuning and retrieval-based approaches, such as parameter-efficient fine-tuning, auto-modeling, and others, on two traditional category-based SCOTUS classification tasks: one with 15 labeled topics and another with 279. We show that prompt-based models with memories, such as DeepSeek, can be more robust than previous BERT-based models on both tasks scoring about 2 points better than previous models not based on prompting.



AI technologies have rapidly moved into business and research applications that involve large text corpora, including computational journalism research and newsroom settings. These models, trained on extant data from various sources, can be conceptualized as historical artifacts that encode decades-old attitudes and stereotypes. This paper investigates one such example trained on the broadly-used New York Times Annotated Corpus to create a multi-label classifier. Our use in research settings surfaced the concerning "blacks" thematic topic label. Through quantitative and qualitative means we investigate this label's use in the training corpus, what concepts it might be encoding in the trained classifier, and how those concepts impact our model use. Via the application of explainable AI methods, we find that the "blacks" label operates partially as a general "racism detector" across some minoritized groups. However, it performs poorly against expectations on modern examples such as COVID-19 era anti-Asian hate stories, and reporting on the Black Lives Matter movement. This case study of interrogating embedded biases in a model reveals how similar applications in newsroom settings can lead to unexpected outputs that could impact a wide variety of potential uses of any large language model-story discovery, audience targeting, summarization, etc. The fundamental tension this exposes for newsrooms is how to adopt AI-enabled workflow tools while reducing the risk of reproducing historical biases in news coverage.
Dialogue Topic Segmentation (DTS) is crucial for understanding task-oriented public-channel communications, such as maritime VHF dialogues, which feature informal speech and implicit transitions. To address the limitations of traditional methods, we propose DASH-DTS, a novel LLM-based framework. Its core contributions are: (1) topic shift detection via dialogue handshake recognition; (2) contextual enhancement through similarity-guided example selection; and (3) the generation of selective positive and negative samples to improve model discrimination and robustness. Additionally, we release VHF-Dial, the first public dataset of real-world maritime VHF communications, to advance research in this domain. DASH-DTS provides interpretable reasoning and confidence scores for each segment. Experimental results demonstrate that our framework achieves several sota segmentation trusted accuracy on both VHF-Dial and standard benchmarks, establishing a strong foundation for stable monitoring and decision support in operational dialogues.
The landscape of scientific peer review is rapidly evolving with the integration of Large Language Models (LLMs). This shift is driven by two parallel trends: the widespread individual adoption of LLMs by reviewers to manage workload (the "Lazy Reviewer" hypothesis) and the formal institutional deployment of AI-powered assessment systems by conferences like AAAI and Stanford's Agents4Science. This study investigates the robustness of these "LLM-as-a-Judge" systems (both illicit and sanctioned) to adversarial PDF manipulation. Unlike general jailbreaks, we focus on a distinct incentive: flipping "Reject" decisions to "Accept," for which we develop a novel evaluation metric which we term as WAVS (Weighted Adversarial Vulnerability Score). We curated a dataset of 200 scientific papers and adapted 15 domain-specific attack strategies to this task, evaluating them across 13 Language Models, including GPT-5, Claude Haiku, and DeepSeek. Our results demonstrate that obfuscation strategies like "Maximum Mark Magyk" successfully manipulate scores, achieving alarming decision flip rates even in large-scale models. We will release our complete dataset and injection framework to facilitate more research on this topic.
LLMs trained on web-scale data raise concerns about privacy and the right to be forgotten. To address these issues, Machine Unlearning provides techniques to remove specific information from trained models without retraining from scratch. However, existing benchmarks for evaluating unlearning in LLMs face two major limitations: they focus only on English and support only entity-level forgetting (removing all information about a person). We introduce FAME (Fictional Actors for Multilingual Erasure), a synthetic benchmark for evaluating Machine Unlearning across five languages: English, French, German, Italian, and Spanish. FAME contains 1,000 fictional actor biographies and 20,000 question-answer pairs. Each biography includes information on 20 topics organized into structured categories (biography, career, achievements, personal information). This design enables both entity-level unlearning (i.e., forgetting entire identities) and instance-level unlearning (i.e., forgetting specific facts while retaining others). We provide two dataset splits to support these two different unlearning scenarios and enable systematic comparison of unlearning techniques across languages. Since FAME uses entirely fictional data, it ensures that the information was never encountered during model pretraining, allowing for a controlled evaluation of unlearning methods.




Nowadays, Graph Fraud Detection (GFD) in financial scenarios has become an urgent research topic to protect online payment security. However, as organized crime groups are becoming more professional in real-world scenarios, fraudsters are employing more sophisticated camouflage strategies. Specifically, fraudsters disguise themselves by mimicking the behavioral data collected by platforms, ensuring that their key characteristics are consistent with those of benign users to a high degree, which we call Adaptive Camouflage. Consequently, this narrows the differences in behavioral traits between them and benign users within the platform's database, thereby making current GFD models lose efficiency. To address this problem, we propose a relation diffusion-based graph augmentation model Grad. In detail, Grad leverages a supervised graph contrastive learning module to enhance the fraud-benign difference and employs a guided relation diffusion generator to generate auxiliary homophilic relations from scratch. Based on these, weak fraudulent signals would be enhanced during the aggregation process, thus being obvious enough to be captured. Extensive experiments have been conducted on two real-world datasets provided by WeChat Pay, one of the largest online payment platforms with billions of users, and three public datasets. The results show that our proposed model Grad outperforms SOTA methods in both various scenarios, achieving at most 11.10% and 43.95% increases in AUC and AP, respectively. Our code is released at https://github.com/AI4Risk/antifraud and https://github.com/Muyiiiii/WWW25-Grad.
Social media serves as a critical medium in modern politics because it both reflects politicians' ideologies and facilitates communication with younger generations. We present MultiParTweet, a multilingual tweet corpus from X that connects politicians' social media discourse with German political corpus GerParCor, thereby enabling comparative analyses between online communication and parliamentary debates. MultiParTweet contains 39 546 tweets, including 19 056 media items. Furthermore, we enriched the annotation with nine text-based models and one vision-language model (VLM) to annotate MultiParTweet with emotion, sentiment, and topic annotations. Moreover, the automated annotations are evaluated against a manually annotated subset. MultiParTweet can be reconstructed using our tool, TTLABTweetCrawler, which provides a framework for collecting data from X. To demonstrate a methodological demonstration, we examine whether the models can predict each other using the outputs of the remaining models. In summary, we provide MultiParTweet, a resource integrating automatic text and media-based annotations validated with human annotations, and TTLABTweetCrawler, a general-purpose X data collection tool. Our analysis shows that the models are mutually predictable. In addition, VLM-based annotation were preferred by human annotators, suggesting that multimodal representations align more with human interpretation.




We propose a post-training method for lower-resource languages that preserves fluency of language models even when aligned by disfluent reward models. Preference-optimization is now a well-researched topic, but previous work has mostly addressed models for English and Chinese. Lower-resource languages lack both datasets written by native speakers and language models capable of generating fluent synthetic data. Thus, in this work, we focus on developing a fluent preference-aligned language model without any instruction-tuning data in the target language. Our approach uses an on-policy training method, which we compare with two common approaches: supervised finetuning on machine-translated data and multilingual finetuning. We conduct a case study on Norwegian Bokmål and evaluate fluency through native-speaker assessments. The results show that the on-policy aspect is crucial and outperforms the alternatives without relying on any hard-to-obtain data.