Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Linear text segmentation is a long-standing problem in natural language processing (NLP), focused on dividing continuous text into coherent and semantically meaningful units. Despite its importance, the task remains challenging due to the complexity of defining topic boundaries, the variability in discourse structure, and the need to balance local coherence with global context. These difficulties hinder downstream applications such as summarization, information retrieval, and question answering. In this work, we introduce SegNSP, framing linear text segmentation as a next sentence prediction (NSP) task. Although NSP has largely been abandoned in modern pre-training, its explicit modeling of sentence-to-sentence continuity makes it a natural fit for detecting topic boundaries. We propose a label-agnostic NSP approach, which predicts whether the next sentence continues the current topic without requiring explicit topic labels, and enhance it with a segmentation-aware loss combined with harder negative sampling to better capture discourse continuity. Unlike recent proposals that leverage NSP alongside auxiliary topic classification, our approach avoids task-specific supervision. We evaluate our model against established baselines on two datasets, CitiLink-Minutes, for which we establish the first segmentation benchmark, and WikiSection. On CitiLink-Minutes, SegNSP achieves a B-$F_1$ of 0.79, closely aligning with human-annotated topic transitions, while on WikiSection it attains a B-F$_1$ of 0.65, outperforming the strongest reproducible baseline, TopSeg, by 0.17 absolute points. These results demonstrate competitive and robust performance, highlighting the effectiveness of modeling sentence-to-sentence continuity for improving segmentation quality and supporting downstream NLP applications.
Knowledge graphs (KGs) provide structured evidence that can ground large language model (LLM) reasoning for knowledge-intensive question answering. However, many practical KGs are private, and sending retrieved triples or exploration traces to closed-source LLM APIs introduces leakage risk. Existing privacy treatments focus on masking entity names, but they still face four limitations: structural leakage under semantic masking, uncontrollable remote interaction, fragile multi-hop and multi-entity reasoning, and limited experience reuse for stability and efficiency. To address these issues, we propose PrivGemo, a privacy-preserving retrieval-augmented framework for KG-grounded reasoning with memory-guided exposure control. PrivGemo uses a dual-tower design to keep raw KG knowledge local while enabling remote reasoning over an anonymized view that goes beyond name masking to limit both semantic and structural exposure. PrivGemo supports multi-hop, multi-entity reasoning by retrieving anonymized long-hop paths that connect all topic entities, while keeping grounding and verification on the local KG. A hierarchical controller and a privacy-aware experience memory further reduce unnecessary exploration and remote interactions. Comprehensive experiments on six benchmarks show that PrivGemo achieves overall state-of-the-art results, outperforming the strongest baseline by up to 17.1%. Furthermore, PrivGemo enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.
The rapid development of large language models has led to an increase in AI-generated text, with students increasingly using LLM-generated content as their own work, which violates academic integrity. This paper presents an evaluation of AI text detection methods, including both traditional machine learning models and transformer-based architectures. We utilize two datasets, HC3 and DAIGT v2, to build a unified benchmark and apply a topic-based data split to prevent information leakage. This approach ensures robust generalization across unseen domains. Our experiments show that TF-IDF logistic regression achieves a reasonable baseline accuracy of 82.87%. However, deep learning models outperform it. The BiLSTM classifier achieves an accuracy of 88.86%, while DistilBERT achieves a similar accuracy of 88.11% with the highest ROC-AUC score of 0.96, demonstrating the strongest overall performance. The results indicate that contextual semantic modeling is significantly superior to lexical features and highlight the importance of mitigating topic memorization through appropriate evaluation protocols. The limitations of this work are primarily related to dataset diversity and computational constraints. In future work, we plan to expand dataset diversity and utilize parameter-efficient fine-tuning methods such as LoRA. We also plan to explore smaller or distilled models and employ more efficient batching strategies and hardware-aware optimization.
Warning: This paper consists of examples representing regional biases in Indian regions that might be offensive towards a particular region. While social biases corresponding to gender, race, socio-economic conditions, etc., have been extensively studied in the major applications of Natural Language Processing (NLP), biases corresponding to regions have garnered less attention. This is mainly because of (i) difficulty in the extraction of regional bias datasets, (ii) disagreements in annotation due to inherent human biases, and (iii) regional biases being studied in combination with other types of social biases and often being under-represented. This paper focuses on creating a dataset IndRegBias, consisting of regional biases in an Indian context reflected in users' comments on popular social media platforms, namely Reddit and YouTube. We carefully selected 25,000 comments appearing on various threads in Reddit and videos on YouTube discussing trending topics on regional issues in India. Furthermore, we propose a multilevel annotation strategy to annotate the comments describing the severity of regional biased statements. To detect the presence of regional bias and its severity in IndRegBias, we evaluate open-source Large Language Models (LLMs) and Indic Language Models (ILMs) using zero-shot, few-shot, and fine-tuning strategies. We observe that zero-shot and few-shot approaches show lower accuracy in detecting regional biases and severity in the majority of the LLMs and ILMs. However, the fine-tuning approach significantly enhances the performance of the LLM in detecting Indian regional bias along with its severity.
Foundation models are powerful yet often opaque in their decision-making. A topic of continued interest in both neuroscience and artificial intelligence is whether some neurons behave like grandmother cells, i.e., neurons that are inherently interpretable because they exclusively respond to single concepts. In this work, we propose two information-theoretic measures that quantify the neuronal saliency and selectivity for single concepts. We apply these metrics to the representations of TabPFN, a tabular foundation model, and perform a simple search across neuron-concept pairs to find the most salient and selective pair. Our analysis provides the first evidence that some neurons in such models show moderate, statistically significant saliency and selectivity for high-level concepts. These findings suggest that interpretable neurons can emerge naturally and that they can, in some cases, be identified without resorting to more complex interpretability techniques.
Retrieval-augmented generation (RAG) systems rely on accurate document retrieval to ground large language models (LLMs) in external knowledge, yet retrieval quality often degrades in corpora where topics overlap and thematic variation is high. This work proposes topic-enriched embeddings that integrate term-based signals and topic structure with contextual sentence embeddings. The approach combines TF-IDF with topic modeling and dimensionality reduction, using Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) to encode latent topical organization, and fuses these representations with a compact contextual encoder (all-MiniLM). By jointly capturing term-level and topic-level semantics, topic-enriched embeddings improve semantic clustering, increase retrieval precision, and reduce computational burden relative to purely contextual baselines. Experiments on a legal-text corpus show consistent gains in clustering coherence and retrieval metrics, suggesting that topic-enriched embeddings can serve as a practical component for more reliable knowledge-intensive RAG pipelines.
User-Defined Text Classification (UDTC) considers the challenge of classifying input text to user-specified, previously unseen classes, a setting that arises frequently in real-world applications such as enterprise analytics, content moderation, and domain-specific information retrieval. We propose a soft-contextualized encoder architecture for UDTC which contextualizes each candidate label with the label set and a static soft prompt representation of the input query. Training on diverse, multi-source datasets enables the model to generalize effectively to zero-shot classification over entirely unseen topic sets drawn from arbitrary domains. We evaluate the proposed architecture both on held-out in-distribution test data and on multiple unseen UDTC benchmarks. Across datasets, the model achieves state-of-the-art performance, consistently outperforming or matching the baselines.
Large language models (LLMs) have demonstrated competitive performance in zero-shot multilingual machine translation (MT). Some follow-up works further improved MT performance via preference optimization, but they leave a key aspect largely underexplored: the order in which data samples are given during training. We address this topic by integrating curriculum learning into various state-of-the-art preference optimization algorithms to boost MT performance. We introduce a novel curriculum learning strategy with restarts (CLewR), which reiterates easy-to-hard curriculum multiple times during training to effectively mitigate the catastrophic forgetting of easy examples. We demonstrate consistent gains across several model families (Gemma2, Qwen2.5, Llama3.1) and preference optimization techniques. We publicly release our code at https://github.com/alexandra-dragomir/CLewR.
This paper addresses the topic of robustness under sensing noise, ambiguous instructions, and human-robot interaction. We take a radically different tack to the issue of reliable embodied AI: instead of focusing on formal verification methods aimed at achieving model predictability and robustness, we emphasise the dynamic, ambiguous and subjective nature of human-robot interactions that requires embodied AI systems to perceive, interpret, and respond to human intentions in a manner that is consistent, comprehensible and aligned with human expectations. We argue that when embodied agents operate in human environments that are inherently social, multimodal, and fluid, reliability is contextually determined and only has meaning in relation to the goals and expectations of humans involved in the interaction. This calls for a fundamentally different approach to achieving reliable embodied AI that is centred on building and updating an accessible "explicit world model" representing the common ground between human and AI, that is used to align robot behaviours with human expectations.
Despite the fact that cancer survivability rates vary greatly between stages, traditional survival prediction models have frequently been trained and assessed using examples from all combined phases of the disease. This method may result in an overestimation of performance and ignore the stage-specific variations. Using the SEER dataset, we created and verified explainable machine learning (ML) models to predict stage-specific cancer survivability in colorectal, stomach, and liver cancers. ML-based cancer survival analysis has been a long-standing topic in the literature; however, studies involving the explainability and transparency of ML survivability models are limited. Our use of explainability techniques, including SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), enabled us to illustrate significant feature-cancer stage interactions that would have remained hidden in traditional black-box models. We identified how certain demographic and clinical variables influenced survival differently across cancer stages and types. These insights provide not only transparency but also clinical relevance, supporting personalized treatment planning. By focusing on stage-specific models, this study provides new insights into the most important factors at each stage of cancer, offering transparency and potential clinical relevance to support personalized treatment planning.