Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Public debates surrounding infrastructure and energy projects involve complex networks of stakeholders, arguments, and evolving narratives. Understanding these dynamics is crucial for anticipating controversies and informing engagement strategies, yet existing tools in media intelligence largely rely on descriptive analytics with limited transparency. This paper presents Stakeholder Suite, a framework deployed in operational contexts for mapping actors, topics, and arguments within public debates. The system combines actor detection, topic modeling, argument extraction and stance classification in a unified pipeline. Tested on multiple energy infrastructure projects as a case study, the approach delivers fine-grained, source-grounded insights while remaining adaptable to diverse domains. The framework achieves strong retrieval precision and stance accuracy, producing arguments judged relevant in 75% of pilot use cases. Beyond quantitative metrics, the tool has proven effective for operational use: helping project teams visualize networks of influence, identify emerging controversies, and support evidence-based decision-making.
Audiobook interpretations are attracting increasing attention, as they provide accessible and in-depth analyses of books that offer readers practical insights and intellectual inspiration. However, their manual creation process remains time-consuming and resource-intensive. To address this challenge, we propose AI4Reading, a multi-agent collaboration system leveraging large language models (LLMs) and speech synthesis technology to generate podcast, like audiobook interpretations. The system is designed to meet three key objectives: accurate content preservation, enhanced comprehensibility, and a logical narrative structure. To achieve these goals, we develop a framework composed of 11 specialized agents,including topic analysts, case analysts, editors, a narrator, and proofreaders that work in concert to explore themes, extract real world cases, refine content organization, and synthesize natural spoken language. By comparing expert interpretations with our system's output, the results show that although AI4Reading still has a gap in speech generation quality, the generated interpretative scripts are simpler and more accurate.
One-to-one tutoring is widely considered the gold standard for personalized education, yet it remains prohibitively expensive to scale. To evaluate whether generative AI might help expand access to this resource, we conducted an exploratory randomized controlled trial (RCT) with $N = 165$ students across five UK secondary schools. We integrated LearnLM -- a generative AI model fine-tuned for pedagogy -- into chat-based tutoring sessions on the Eedi mathematics platform. In the RCT, expert tutors directly supervised LearnLM, with the remit to revise each message it drafted until they would be satisfied sending it themselves. LearnLM proved to be a reliable source of pedagogical instruction, with supervising tutors approving 76.4% of its drafted messages making zero or minimal edits (i.e., changing only one or two characters). This translated into effective tutoring support: students guided by LearnLM performed at least as well as students chatting with human tutors on each learning outcome we measured. In fact, students who received support from LearnLM were 5.5 percentage points more likely to solve novel problems on subsequent topics (with a success rate of 66.2%) than those who received tutoring from human tutors alone (rate of 60.7%). In interviews, tutors highlighted LearnLM's strength at drafting Socratic questions that encouraged deeper reflection from students, with multiple tutors even reporting that they learned new pedagogical practices from the model. Overall, our results suggest that pedagogically fine-tuned AI tutoring systems may play a promising role in delivering effective, individualized learning support at scale.
With the wide-scale adoption of conversational AI systems, AI are now able to exert unprecedented influence on human opinion and beliefs. Recent work has shown that many Large Language Models (LLMs) comply with requests to persuade users into harmful beliefs or actions when prompted and that model persuasiveness increases with model scale. However, this prior work looked at persuasion from the threat model of $\textit{misuse}$ (i.e., a bad actor asking an LLM to persuade). In this paper, we instead aim to answer the following question: Under what circumstances would models persuade $\textit{without being explicitly prompted}$, which would shape how concerned we should be about such emergent persuasion risks. To achieve this, we study unprompted persuasion under two scenarios: (i) when the model is steered (through internal activation steering) along persona traits, and (ii) when the model is supervised-finetuned (SFT) to exhibit the same traits. We showed that steering towards traits, both related to persuasion and unrelated, does not reliably increase models' tendency to persuade unprompted, however, SFT does. Moreover, SFT on general persuasion datasets containing solely benign topics admits a model that has a higher propensity to persuade on controversial and harmful topics--showing that emergent harmful persuasion can arise and should be studied further.
The performance of quantum neural network models depends strongly on architectural decisions, including circuit depth, placement of parametrized operations, and data-encoding strategies. Selecting an effective architecture is challenging and closely related to the classical difficulty of choosing suitable neural-network topologies, which is computationally hard. This work investigates automated quantum-circuit construction for regression tasks and introduces a genetic-algorithm framework that discovers Reduced Regressor QNN architectures. The approach explores depth, parametrized gate configurations, and flexible data re-uploading patterns, formulating the construction of quantum regressors as an optimization process. The discovered circuits are evaluated against seventeen classical regression models on twenty-two nonlinear benchmark functions and four analytical functions. Although classical methods often achieve comparable results, they typically require far more parameters, whereas the evolved quantum models remain compact while providing competitive performance. We further analyze dataset complexity using twelve structural descriptors and show, across five increasingly challenging meta-learning scenarios, that these measures can reliably predict which quantum architecture will perform best. The results demonstrate perfect or near-perfect predictive accuracy in several scenarios, indicating that complexity metrics offer powerful and compact representations of dataset structure and can effectively guide automated model selection. Overall, this study provides a principled basis for meta-learning-driven quantum architecture design and advances the understanding of how quantum models behave in regression settings--a topic that has received limited exploration in prior work. These findings pave the way for more systematic and theoretically grounded approaches to quantum regression.
The statistical over-representation of phonological features in the basic vocabulary of languages is often interpreted as reflecting potentially universal sound symbolic patterns. However, most of those results have not been tested explicitly for reproducibility and might be prone to biases in the study samples or models. Many studies on the topic do not adequately control for genealogical and areal dependencies between sampled languages, casting doubts on the robustness of the results. In this study, we test the robustness of a recent study on sound symbolism of basic vocabulary concepts which analyzed 245 languages.The new sample includes data on 2864 languages from Lexibank. We modify the original model by adding statistical controls for spatial and phylogenetic dependencies between languages. The new results show that most of the previously observed patterns are not robust, and in fact many patterns disappear completely when adding the genealogical and areal controls. A small number of patterns, however, emerges as highly stable even with the new sample. Through the new analysis, we are able to assess the distribution of sound symbolism on a larger scale than previously. The study further highlights the need for testing all universal claims on language for robustness on various levels.




Extracting coherent and human-understandable themes from large collections of unstructured historical newspaper archives presents significant challenges due to topic evolution, Optical Character Recognition (OCR) noise, and the sheer volume of text. Traditional topic-modeling methods, such as Latent Dirichlet Allocation (LDA), often fall short in capturing the complexity and dynamic nature of discourse in historical texts. To address these limitations, we employ BERTopic. This neural topic-modeling approach leverages transformerbased embeddings to extract and classify topics, which, despite its growing popularity, still remains underused in historical research. Our study focuses on articles published between 1955 and 2018, specifically examining discourse on nuclear power and nuclear safety. We analyze various topic distributions across the corpus and trace their temporal evolution to uncover long-term trends and shifts in public discourse. This enables us to more accurately explore patterns in public discourse, including the co-occurrence of themes related to nuclear power and nuclear weapons and their shifts in topic importance over time. Our study demonstrates the scalability and contextual sensitivity of BERTopic as an alternative to traditional approaches, offering richer insights into historical discourses extracted from newspaper archives. These findings contribute to historical, nuclear, and social-science research while reflecting on current limitations and proposing potential directions for future work.




Query Expansion (QE) enriches queries and Document Expansion (DE) enriches documents, and these two techniques are often applied separately. However, such separate application may lead to semantic misalignment between the expanded queries (or documents) and their relevant documents (or queries). To address this serious issue, we propose TCDE, a dual expansion strategy that leverages large language models (LLMs) for topic-centric enrichment on both queries and documents. In TCDE, we design two distinct prompt templates for processing each query and document. On the query side, an LLM is guided to identify distinct sub-topics within each query and generate a focused pseudo-document for each sub-topic. On the document side, an LLM is guided to distill each document into a set of core topic sentences. The resulting outputs are used to expand the original query and document. This topic-centric dual expansion process establishes semantic bridges between queries and their relevant documents, enabling better alignment for downstream retrieval models. Experiments on two challenging benchmarks, TREC Deep Learning and BEIR, demonstrate that TCDE achieves substantial improvements over strong state-of-the-art expansion baselines. In particular, on dense retrieval tasks, it outperforms several state-of-the-art methods, with a relative improvement of 2.8\% in NDCG@10 on the SciFact dataset. Experimental results validate the effectiveness of our topic-centric and dual expansion strategy.




We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.




As generative artificial intelligence (GenAI) becomes increasingly capable of delivering personalized learning experiences and real-time feedback, a growing number of students are incorporating these tools into their academic workflows. They use GenAI to clarify concepts, solve complex problems, and, in some cases, complete assignments by copying and pasting model-generated contents. While GenAI has the potential to enhance learning experience, it also raises concerns around misinformation, hallucinated outputs, and its potential to undermine critical thinking and problem-solving skills. In response, many universities, colleges, departments, and instructors have begun to develop and adopt policies to guide responsible integration of GenAI into learning environments. However, these policies vary widely across institutions and contexts, and their evolving nature often leaves students uncertain about expectations and best practices. To address this challenge, the authors designed and implemented an automated system for discovering and categorizing AI-related policies found in course syllabi and institutional policy websites. The system combines unsupervised topic modeling techniques to identify key policy themes with large language models (LLMs) to classify the level of GenAI allowance and other requirements in policy texts. The developed application achieved a coherence score of 0.73 for topic discovery. In addition, GPT-4.0-based classification of policy categories achieved precision between 0.92 and 0.97, and recall between 0.85 and 0.97 across eight identified topics. By providing structured and interpretable policy information, this tool promotes the safe, equitable, and pedagogically aligned use of GenAI technologies in education. Furthermore, the system can be integrated into educational technology platforms to help students understand and comply with relevant guidelines.