Abstract:In the era of explosive growth in academic literature, the burden of literature review on scholars are increasing. Proactively recommending academic papers that align with scholars' literature needs in the research process has become one of the crucial pathways to enhance research efficiency and stimulate innovative thinking. Current academic paper recommendation systems primarily focus on broad and coarse-grained suggestions based on general topic or field similarities. While these systems effectively identify related literature, they fall short in addressing scholars' more specific and fine-grained needs, such as locating papers that utilize particular research methods, or tackle distinct research tasks within the same topic. To meet the diverse and specific literature needs of scholars in the research process, this paper proposes a novel academic paper recommendation method. This approach embeds multidimensional information by integrating new types of fine-grained knowledge entities, title and abstract of document, and citation data. Recommendations are then generated by calculating the similarity between combined paper vectors. The proposed recommendation method was evaluated using the STM-KG dataset, a knowledge graph that incorporates scientific concepts derived from papers across ten distinct domains. The experimental results indicate that our method outperforms baseline models, achieving an average precision of 27.3% among the top 50 recommendations. This represents an improvement of 6.7% over existing approaches.
Abstract:Peer review is vital in academia for evaluating research quality. Top AI conferences use reviewer confidence scores to ensure review reliability, but existing studies lack fine-grained analysis of text-score consistency, potentially missing key details. This work assesses consistency at word, sentence, and aspect levels using deep learning and NLP conference review data. We employ deep learning to detect hedge sentences and aspects, then analyze report length, hedge word/sentence frequency, aspect mentions, and sentiment to evaluate text-score alignment. Correlation, significance, and regression tests examine confidence scores' impact on paper outcomes. Results show high text-score consistency across all levels, with regression revealing higher confidence scores correlate with paper rejection, validating expert assessments and peer review fairness.