We present a systematic framework of indices designed to characterize Large Language Model (LLM) responses when challenged with rebuttals during a chat. Assessing how LLMs respond to user dissent is crucial for understanding their reliability and behavior patterns, yet the complexity of human-LLM interactions makes systematic evaluation challenging. Our approach employs a fictitious-response rebuttal method that quantifies LLM behavior when presented with multiple-choice questions followed by deliberate challenges to their fictitious previous response. The indices are specifically designed to detect and measure what could be characterized as sycophantic behavior (excessive agreement with user challenges) or stubborn responses (rigid adherence to the fictitious response in the chat history) from LLMs. These metrics allow investigation of the relationships between sycophancy, stubbornness, and the model's actual mastery of the subject matter. We demonstrate the utility of these indices using two physics problems as test scenarios with various OpenAI models. The framework is intentionally generalizable to any multiple-choice format question, including on topics without universally accepted correct answers. Our results reveal measurable differences across OpenAI model generations, with trends indicating that newer models and those employing greater "Reasoning Effort" exhibit reduced sycophantic behavior. The FR pairing method combined with our proposed indices provides a practical, adaptable toolkit for systematically comparing LLM dialogue behaviors across different models and contexts.
Understanding affective polarization in online discourse is crucial for evaluating the societal impact of social media interactions. This study presents a novel framework that leverages large language models (LLMs) and domain-informed heuristics to systematically analyze and quantify affective polarization in discussions on divisive topics such as climate change and gun control. Unlike most prior approaches that relied on sentiment analysis or predefined classifiers, our method integrates LLMs to extract stance, affective tone, and agreement patterns from large-scale social media discussions. We then apply a rule-based scoring system capable of quantifying affective polarization even in small conversations consisting of single interactions, based on stance alignment, emotional content, and interaction dynamics. Our analysis reveals distinct polarization patterns that are event dependent: (i) anticipation-driven polarization, where extreme polarization escalates before well-publicized events, and (ii) reactive polarization, where intense affective polarization spikes immediately after sudden, high-impact events. By combining AI-driven content annotation with domain-informed scoring, our framework offers a scalable and interpretable approach to measuring affective polarization. The source code is publicly available at: https://github.com/hasanjawad001/llm-social-media-polarization.
In the rapidly evolving landscape of enterprise natural language processing (NLP), the demand for efficient, lightweight models capable of handling multi-domain text automation tasks has intensified. This study conducts a comparative analysis of three prominent lightweight Transformer models - DistilBERT, MiniLM, and ALBERT - across three distinct domains: customer sentiment classification, news topic classification, and toxicity and hate speech detection. Utilizing datasets from IMDB, AG News, and the Measuring Hate Speech corpus, we evaluated performance using accuracy-based metrics including accuracy, precision, recall, and F1-score, as well as efficiency metrics such as model size, inference time, throughput, and memory usage. Key findings reveal that no single model dominates all performance dimensions. ALBERT achieves the highest task-specific accuracy in multiple domains, MiniLM excels in inference speed and throughput, and DistilBERT demonstrates the most consistent accuracy across tasks while maintaining competitive efficiency. All results reflect controlled fine-tuning under fixed enterprise-oriented constraints rather than exhaustive hyperparameter optimization. These results highlight trade-offs between accuracy and efficiency, recommending MiniLM for latency-sensitive enterprise applications, DistilBERT for balanced performance, and ALBERT for resource-constrained environments.
Rigorous crop counting is crucial for effective agricultural management and informed intervention strategies. However, in outdoor field environments, partial occlusions combined with inherent ambiguity in distinguishing clustered crops from individual viewpoints poses an immense challenge for image-based segmentation methods. To address these problems, we introduce a novel crop counting framework designed for exact enumeration via 3D instance segmentation. Our approach utilizes 2D images captured from multiple viewpoints and associates independent instance masks for neural radiance field (NeRF) view synthesis. We introduce crop visibility and mask consistency scores, which are incorporated alongside 3D information from a NeRF model. This results in an effective segmentation of crop instances in 3D and highly-accurate crop counts. Furthermore, our method eliminates the dependence on crop-specific parameter tuning. We validate our framework on three agricultural datasets consisting of cotton bolls, apples, and pears, and demonstrate consistent counting performance despite major variations in crop color, shape, and size. A comparative analysis against the state of the art highlights superior performance on crop counting tasks. Lastly, we contribute a cotton plant dataset to advance further research on this topic.
Modern enterprise retrieval systems must handle short, underspecified queries such as ``foreign transaction fee refund'' and ``recent check status''. In these cases, semantic nuance and metadata matter but per-query large language model (LLM) re-ranking and manual labeling are costly. We present Metadata-Aware Cross-Model Alignment (MACA), which distills a calibrated metadata aware LLM re-ranker into a compact student retriever, avoiding online LLM calls. A metadata-aware prompt verifies the teacher's trustworthiness by checking consistency under permutations and robustness to paraphrases, then supplies listwise scores, hard negatives, and calibrated relevance margins. The student trains with MACA's MetaFusion objective, which combines a metadata conditioned ranking loss with a cross model margin loss so it learns to push the correct answer above semantically similar candidates with mismatched topic, sub-topic, or entity. On a proprietary consumer banking FAQ corpus and BankFAQs, the MACA teacher surpasses a MAFA baseline at Accuracy@1 by five points on the proprietary set and three points on BankFAQs. MACA students substantially outperform pretrained encoders; e.g., on the proprietary corpus MiniLM Accuracy@1 improves from 0.23 to 0.48, while keeping inference free of LLM calls and supporting retrieval-augmented generation.
Large language models (LLMs) have made rapid progress in formal theorem proving, yet current benchmarks under-measure the kind of abstraction and library-mediated reasoning that organizes modern mathematics. In parallel with FATE's emphasis on frontier algebra, we introduce LeanCat, a Lean benchmark for category-theoretic formalization -- a unifying language for mathematical structure and a core layer of modern proof engineering -- serving as a stress test of structural, interface-level reasoning. Part I: 1-Categories contains 100 fully formalized statement-level tasks, curated into topic families and three difficulty tiers via an LLM-assisted + human grading process. The best model solves 8.25% of tasks at pass@1 (32.50%/4.17%/0.00% by Easy/Medium/High) and 12.00% at pass@4 (50.00%/4.76%/0.00%). We also evaluate LeanBridge which use LeanExplore to search Mathlib, and observe consistent gains over single-model baselines. LeanCat is intended as a compact, reusable checkpoint for tracking both AI and human progress toward reliable, research-level formalization in Lean.
Retrieval-augmented generation (RAG) systems rely on accurate document retrieval to ground large language models (LLMs) in external knowledge, yet retrieval quality often degrades in corpora where topics overlap and thematic variation is high. This work proposes topic-enriched embeddings that integrate term-based signals and topic structure with contextual sentence embeddings. The approach combines TF-IDF with topic modeling and dimensionality reduction, using Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA) to encode latent topical organization, and fuses these representations with a compact contextual encoder (all-MiniLM). By jointly capturing term-level and topic-level semantics, topic-enriched embeddings improve semantic clustering, increase retrieval precision, and reduce computational burden relative to purely contextual baselines. Experiments on a legal-text corpus show consistent gains in clustering coherence and retrieval metrics, suggesting that topic-enriched embeddings can serve as a practical component for more reliable knowledge-intensive RAG pipelines.
Recently published work titled Your Brain on ChatGPT: Accumulation of Cognitive Debt When Using an AI Assistant for Essay Writing Task by Kosmyna et al. (2025) has sparked a vivid debate on the topic of artificial intelligence (AI) and human performance. We sincerely congratulate Kosmyna et al. for initiating such important research, collecting a valuable dataset, and establishing highly automated pipelines for Natural Language Processing (NLP) analyses and scoring. We aim to provide constructive comments that may improve the manuscript's readiness for peer-reviewed publication, as some results by Kosmyna et al. (2025) could be interpreted more conservatively. Our primary concerns focus on: (i) study design considerations, including the limited sample size; (ii) the reproducibility of the analyses; (iii) methodological issues related to the EEG analysis; (iv) inconsistencies in the reporting of results; and (v) limited transparency in several aspects of the study's procedures and findings.
One-to-one tutoring is widely considered the gold standard for personalized education, yet it remains prohibitively expensive to scale. To evaluate whether generative AI might help expand access to this resource, we conducted an exploratory randomized controlled trial (RCT) with $N = 165$ students across five UK secondary schools. We integrated LearnLM -- a generative AI model fine-tuned for pedagogy -- into chat-based tutoring sessions on the Eedi mathematics platform. In the RCT, expert tutors directly supervised LearnLM, with the remit to revise each message it drafted until they would be satisfied sending it themselves. LearnLM proved to be a reliable source of pedagogical instruction, with supervising tutors approving 76.4% of its drafted messages making zero or minimal edits (i.e., changing only one or two characters). This translated into effective tutoring support: students guided by LearnLM performed at least as well as students chatting with human tutors on each learning outcome we measured. In fact, students who received support from LearnLM were 5.5 percentage points more likely to solve novel problems on subsequent topics (with a success rate of 66.2%) than those who received tutoring from human tutors alone (rate of 60.7%). In interviews, tutors highlighted LearnLM's strength at drafting Socratic questions that encouraged deeper reflection from students, with multiple tutors even reporting that they learned new pedagogical practices from the model. Overall, our results suggest that pedagogically fine-tuned AI tutoring systems may play a promising role in delivering effective, individualized learning support at scale.
Machine Learning (ML) has been a foundational topic in artificial intelligence (AI), providing both theoretical groundwork and practical tools for its exciting advancements. From ResNet for visual recognition to Transformer for vision-language alignment, the AI models have achieved superior capability to humans. Furthermore, the scaling law has enabled AI to initially develop general intelligence, as demonstrated by Large Language Models (LLMs). To this stage, AI has had an enormous influence on society and yet still keeps shaping the future for humanity. However, distribution shift remains a persistent ``Achilles' heel'', fundamentally limiting the reliability and general usefulness of ML systems. Moreover, generalization under distribution shift would also cause trust issues for AIs. Motivated by these challenges, my research focuses on \textit{Trustworthy Machine Learning under Distribution Shifts}, with the goal of expanding AI's robustness, versatility, as well as its responsibility and reliability. We carefully study the three common distribution shifts into: (1) Perturbation Shift, (2) Domain Shift, and (3) Modality Shift. For all scenarios, we also rigorously investigate trustworthiness via three aspects: (1) Robustness, (2) Explainability, and (3) Adaptability. Based on these dimensions, we propose effective solutions and fundamental insights, meanwhile aiming to enhance the critical ML problems, such as efficiency, adaptability, and safety.