Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.




Unified multimodal Large Language Models (LLMs) that can both understand and generate visual content hold immense potential. However, existing open-source models often suffer from a performance trade-off between these capabilities. We present Manzano, a simple and scalable unified framework that substantially reduces this tension by coupling a hybrid image tokenizer with a well-curated training recipe. A single shared vision encoder feeds two lightweight adapters that produce continuous embeddings for image-to-text understanding and discrete tokens for text-to-image generation within a common semantic space. A unified autoregressive LLM predicts high-level semantics in the form of text and image tokens, with an auxiliary diffusion decoder subsequently translating the image tokens into pixels. The architecture, together with a unified training recipe over understanding and generation data, enables scalable joint learning of both capabilities. Manzano achieves state-of-the-art results among unified models, and is competitive with specialist models, particularly on text-rich evaluation. Our studies show minimal task conflicts and consistent gains from scaling model size, validating our design choice of a hybrid tokenizer.
Deep Feedback Models (DFMs) are a new class of stateful neural networks that combine bottom up input with high level representations over time. This feedback mechanism introduces dynamics into otherwise static architectures, enabling DFMs to iteratively refine their internal state and mimic aspects of biological decision making. We model this process as a differential equation solved through a recurrent neural network, stabilized via exponential decay to ensure convergence. To evaluate their effectiveness, we measure DFMs under two key conditions: robustness to noise and generalization with limited data. In both object recognition and segmentation tasks, DFMs consistently outperform their feedforward counterparts, particularly in low data or high noise regimes. In addition, DFMs translate to medical imaging settings, while being robust against various types of noise corruption. These findings highlight the importance of feedback in achieving stable, robust, and generalizable learning. Code is available at https://github.com/DCalhas/deep_feedback_models.
Diffusion models excel in noise-to-data generation tasks, providing a mapping from a Gaussian distribution to a more complex data distribution. However they struggle to model translations between complex distributions, limiting their effectiveness in data-to-data tasks. While Bridge Matching (BM) models address this by finding the translation between data distributions, their application to time-correlated data sequences remains unexplored. This is a critical limitation for video generation and manipulation tasks, where maintaining temporal coherence is particularly important. To address this gap, we propose Time-Correlated Video Bridge Matching (TCVBM), a framework that extends BM to time-correlated data sequences in the video domain. TCVBM explicitly models inter-sequence dependencies within the diffusion bridge, directly incorporating temporal correlations into the sampling process. We compare our approach to classical methods based on bridge matching and diffusion models for three video-related tasks: frame interpolation, image-to-video generation, and video super-resolution. TCVBM achieves superior performance across multiple quantitative metrics, demonstrating enhanced generation quality and reconstruction fidelity.
Minimum Bayes risk (MBR) decoding is a decision rule of text generation, which selects the hypothesis that maximizes the expected utility and robustly generates higher-quality texts than maximum a posteriori (MAP) decoding. However, it depends on sample texts drawn from the text generation model; thus, it is difficult to find a hypothesis that correctly captures the knowledge or information of out-of-domain. To tackle this issue, we propose case-based decision-theoretic (CBDT) decoding, another method to estimate the expected utility using examples of domain data. CBDT decoding not only generates higher-quality texts than MAP decoding, but also the combination of MBR and CBDT decoding outperformed MBR decoding in seven domain De--En and Ja$\leftrightarrow$En translation tasks and image captioning tasks on MSCOCO and nocaps datasets.
Diffusion models excel at generating high-quality outputs but face challenges in data-scarce domains, where exhaustive retraining or costly paired data are often required. To address these limitations, we propose Latent Aligned Diffusion Bridges (LADB), a semi-supervised framework for sample-to-sample translation that effectively bridges domain gaps using partially paired data. By aligning source and target distributions within a shared latent space, LADB seamlessly integrates pretrained source-domain diffusion models with a target-domain Latent Aligned Diffusion Model (LADM), trained on partially paired latent representations. This approach enables deterministic domain mapping without the need for full supervision. Compared to unpaired methods, which often lack controllability, and fully paired approaches that require large, domain-specific datasets, LADB strikes a balance between fidelity and diversity by leveraging a mixture of paired and unpaired latent-target couplings. Our experimental results demonstrate superior performance in depth-to-image translation under partial supervision. Furthermore, we extend LADB to handle multi-source translation (from depth maps and segmentation masks) and multi-target translation in a class-conditioned style transfer task, showcasing its versatility in handling diverse and heterogeneous use cases. Ultimately, we present LADB as a scalable and versatile solution for real-world domain translation, particularly in scenarios where data annotation is costly or incomplete.




Computed tomography (CT) is essential for treatment and diagnostics; In case CT are missing or otherwise difficult to obtain, methods for generating synthetic CT (sCT) images from magnetic resonance imaging (MRI) images are sought after. Therefore, it is valuable to establish a reference for what strategies are most effective for MRI-to-CT translation. In this paper, we compare the performance of two frequently used architectures for MRI-to-CT translation: a conditional generative adversarial network (cGAN) and a conditional denoising diffusion probabilistic model (cDDPM). We chose well-established implementations to represent each architecture: Pix2Pix for cGAN, and Palette for cDDPM. We separate the classical 3D translation problem into a sequence of 2D translations on the transverse plane, to investigate the viability of a strategy that reduces the computational cost. We also investigate the impact of conditioning the generative process on a single MRI image/slice and on multiple MRI slices. The performance is assessed using a thorough evaluation protocol, including a novel slice-wise metric Similarity Of Slices (SIMOS), which measures the continuity between transverse slices when compiling the sCTs into 3D format. Our comparative analysis revealed that MRI-to-CT generative models benefit from multi-channel conditional input and using cDDPM as an architecture.
Three-dimensional X-ray histology techniques offer a non-invasive alternative to conventional 2D histology, enabling volumetric imaging of biological tissues without the need for physical sectioning or chemical staining. However, the inherent greyscale image contrast of X-ray tomography limits its biochemical specificity compared to traditional histological stains. Within digital pathology, deep learning-based virtual staining has demonstrated utility in simulating stained appearances from label-free optical images. In this study, we extend virtual staining to the X-ray domain by applying cross-modality image translation to generate artificially stained slices from synchrotron-radiation-based micro-CT scans. Using over 50 co-registered image pairs of micro-CT and toluidine blue-stained histology from bone-implant samples, we trained a modified CycleGAN network tailored for limited paired data. Whole slide histology images were downsampled to match the voxel size of the CT data, with on-the-fly data augmentation for patch-based training. The model incorporates pixelwise supervision and greyscale consistency terms, producing histologically realistic colour outputs while preserving high-resolution structural detail. Our method outperformed Pix2Pix and standard CycleGAN baselines across SSIM, PSNR, and LPIPS metrics. Once trained, the model can be applied to full CT volumes to generate virtually stained 3D datasets, enhancing interpretability without additional sample preparation. While features such as new bone formation were able to be reproduced, some variability in the depiction of implant degradation layers highlights the need for further training data and refinement. This work introduces virtual staining to 3D X-ray imaging and offers a scalable route for chemically informative, label-free tissue characterisation in biomedical research.
Multimodal image matching seeks pixel-level correspondences between images of different modalities, crucial for cross-modal perception, fusion and analysis. However, the significant appearance differences between modalities make this task challenging. Due to the scarcity of high-quality annotated datasets, existing deep learning methods that extract modality-common features for matching perform poorly and lack adaptability to diverse scenarios. Vision Foundation Model (VFM), trained on large-scale data, yields generalizable and robust feature representations adapted to data and tasks of various modalities, including multimodal matching. Thus, we propose DistillMatch, a multimodal image matching method using knowledge distillation from VFM. DistillMatch employs knowledge distillation to build a lightweight student model that extracts high-level semantic features from VFM (including DINOv2 and DINOv3) to assist matching across modalities. To retain modality-specific information, it extracts and injects modality category information into the other modality's features, which enhances the model's understanding of cross-modal correlations. Furthermore, we design V2I-GAN to boost the model's generalization by translating visible to pseudo-infrared images for data augmentation. Experiments show that DistillMatch outperforms existing algorithms on public datasets.




Action Quality Assessment (AQA) quantifies human actions in videos, supporting applications in sports scoring, rehabilitation, and skill evaluation. A major challenge lies in the non-stationary nature of quality distributions in real-world scenarios, which limits the generalization ability of conventional methods. We introduce Continual AQA (CAQA), which equips AQA with Continual Learning (CL) capabilities to handle evolving distributions while mitigating catastrophic forgetting. Although parameter-efficient fine-tuning of pretrained models has shown promise in CL for image classification, we find it insufficient for CAQA. Our empirical and theoretical analyses reveal two insights: (i) Full-Parameter Fine-Tuning (FPFT) is necessary for effective representation learning; yet (ii) uncontrolled FPFT induces overfitting and feature manifold shift, thereby aggravating forgetting. To address this, we propose Adaptive Manifold-Aligned Graph Regularization (MAGR++), which couples backbone fine-tuning that stabilizes shallow layers while adapting deeper ones with a two-step feature rectification pipeline: a manifold projector to translate deviated historical features into the current representation space, and a graph regularizer to align local and global distributions. We construct four CAQA benchmarks from three datasets with tailored evaluation protocols and strong baselines, enabling systematic cross-dataset comparison. Extensive experiments show that MAGR++ achieves state-of-the-art performance, with average correlation gains of 3.6% offline and 12.2% online over the strongest baseline, confirming its robustness and effectiveness. Our code is available at https://github.com/ZhouKanglei/MAGRPP.
We present StyleClone, a method for training image-to-image translation networks to stylize faces in a specific style, even with limited style images. Our approach leverages textual inversion and diffusion-based guided image generation to augment small style datasets. By systematically generating diverse style samples guided by both the original style images and real face images, we significantly enhance the diversity of the style dataset. Using this augmented dataset, we train fast image-to-image translation networks that outperform diffusion-based methods in speed and quality. Experiments on multiple styles demonstrate that our method improves stylization quality, better preserves source image content, and significantly accelerates inference. Additionally, we provide a systematic evaluation of the augmentation techniques and their impact on stylization performance.