What is Anomaly? Anomaly detection is the process of identifying unusual patterns or outliers in data that do not conform to expected behavior.
Papers and Code
May 10, 2025
Abstract:Autonomous Vehicles (AV) proliferation brings important and pressing security and reliability issues that must be dealt with to guarantee public safety and help their widespread adoption. The contribution of the proposed research is towards achieving more secure, reliable, and trustworthy autonomous transportation system by providing more capabilities for anomaly detection, data provenance, and real-time response in safety critical AV deployments. In this research, we develop a new framework that combines the power of Artificial Intelligence (AI) for real-time anomaly detection with blockchain technology to detect and prevent any malicious activity including sensor failures in AVs. Through Long Short-Term Memory (LSTM) networks, our approach continually monitors associated multi-sensor data streams to detect anomalous patterns that may represent cyberattacks as well as hardware malfunctions. Further, this framework employs a decentralized platform for securely storing sensor data and anomaly alerts in a blockchain ledger for data incorruptibility and authenticity, while offering transparent forensic features. Moreover, immediate automated response mechanisms are deployed using smart contracts when anomalies are found. This makes the AV system more resilient to attacks from both cyberspace and hardware component failure. Besides, we identify potential challenges of scalability in handling high frequency sensor data, computational constraint in resource constrained environment, and of distributed data storage in terms of privacy.
* Scheduled for presentation at an upcoming conference
Via

May 10, 2025
Abstract:In the dynamic landscape of Industry 4.0, achieving efficiency, precision, and adaptability is essential to optimize manufacturing operations. Industries suffer due to supply chain disruptions caused by anomalies, which are being detected by current AI models but leaving domain experts uncertain without deeper insights into these anomalies. Additionally, operational inefficiencies persist due to inaccurate production forecasts and the limited effectiveness of traditional AI models for processing complex sensor data. Despite these advancements, existing systems lack the seamless integration of these capabilities needed to create a truly unified solution for enhancing production and decision-making. We propose SmartPilot, a neurosymbolic, multiagent CoPilot designed for advanced reasoning and contextual decision-making to address these challenges. SmartPilot processes multimodal sensor data and is compact to deploy on edge devices. It focuses on three key tasks: anomaly prediction, production forecasting, and domain-specific question answering. By bridging the gap between AI capabilities and real-world industrial needs, SmartPilot empowers industries with intelligent decision-making and drives transformative innovation in manufacturing. The demonstration video, datasets, and supplementary materials are available at https://github.com/ChathurangiShyalika/SmartPilot.
* 8 pages, 8 figures, 4 tables, IEEE Conference on Artificial
Intelligence (IEEE CAI) 2025
Via

May 09, 2025
Abstract:As AI models scale to billions of parameters and operate with increasing autonomy, ensuring their safe, reliable operation demands engineering-grade security and assurance frameworks. This paper presents an enterprise-level, risk-aware, security-by-design approach for large-scale autonomous AI systems, integrating standardized threat metrics, adversarial hardening techniques, and real-time anomaly detection into every phase of the development lifecycle. We detail a unified pipeline - from design-time risk assessments and secure training protocols to continuous monitoring and automated audit logging - that delivers provable guarantees of model behavior under adversarial and operational stress. Case studies in national security, open-source model governance, and industrial automation demonstrate measurable reductions in vulnerability and compliance overhead. Finally, we advocate cross-sector collaboration - uniting engineering teams, standards bodies, and regulatory agencies - to institutionalize these technical safeguards within a resilient, end-to-end assurance ecosystem for the next generation of AI.
Via

May 09, 2025
Abstract:In modern assembly pipelines, identifying anomalies is crucial in ensuring product quality and operational efficiency. Conventional single-modality methods fail to capture the intricate relationships required for precise anomaly prediction in complex predictive environments with abundant data and multiple modalities. This paper proposes a neurosymbolic AI and fusion-based approach for multimodal anomaly prediction in assembly pipelines. We introduce a time series and image-based fusion model that leverages decision-level fusion techniques. Our research builds upon three primary novel approaches in multimodal learning: time series and image-based decision-level fusion modeling, transfer learning for fusion, and knowledge-infused learning. We evaluate the novel method using our derived and publicly available multimodal dataset and conduct comprehensive ablation studies to assess the impact of our preprocessing techniques and fusion model compared to traditional baselines. The results demonstrate that a neurosymbolic AI-based fusion approach that uses transfer learning can effectively harness the complementary strengths of time series and image data, offering a robust and interpretable approach for anomaly prediction in assembly pipelines with enhanced performance. \noindent The datasets, codes to reproduce the results, supplementary materials, and demo are available at https://github.com/ChathurangiShyalika/NSF-MAP.
* 9 pages, 7 figures, 2 tables, IJCAI 2025 (International Joint
Conferences on Artificial Intelligence) Special Track on AI4Tech: AI Enabling
Critical Technologies
Via

May 09, 2025
Abstract:This study presents an integrated methodology for fault detection in wind turbine blades using 3D-printed scaled models, finite element simulations, experimental modal analysis, and machine learning techniques. A scaled model of the NREL 5MW blade was fabricated using 3D printing, and crack-type damages were introduced at critical locations. Finite Element Analysis was employed to predict the impact of these damages on the natural frequencies, with the results validated through controlled hammer impact tests. Vibration data was processed to extract both time-domain and frequency-domain features, and key discriminative variables were identified using statistical analyses (ANOVA). Machine learning classifiers, including Support Vector Machine and K-Nearest Neighbors, achieved classification accuracies exceeding 94%. The results revealed that vibration modes 3, 4, and 6 are particularly sensitive to structural anomalies for this blade. This integrated approach confirms the feasibility of combining numerical simulations with experimental validations and paves the way for structural health monitoring systems in wind energy applications.
Via

May 09, 2025
Abstract:Academic misconduct detection in biomedical research remains challenging due to algorithmic narrowness in existing methods and fragmented analytical pipelines. We present BMMDetect, a multimodal deep learning framework that integrates journal metadata (SJR, institutional data), semantic embeddings (PubMedBERT), and GPT-4o-mined textual attributes (methodological statistics, data anomalies) for holistic manuscript evaluation. Key innovations include: (1) multimodal fusion of domain-specific features to reduce detection bias; (2) quantitative evaluation of feature importance, identifying journal authority metrics (e.g., SJR-index) and textual anomalies (e.g., statistical outliers) as dominant predictors; and (3) the BioMCD dataset, a large-scale benchmark with 13,160 retracted articles and 53,411 controls. BMMDetect achieves 74.33% AUC, outperforming single-modality baselines by 8.6%, and demonstrates transferability across biomedical subfields. This work advances scalable, interpretable tools for safeguarding research integrity.
Via

May 09, 2025
Abstract:Reliable anomaly detection is essential for ensuring the safety of autonomous robots, particularly when conventional detection systems based on vision or LiDAR become unreliable in adverse or unpredictable conditions. In such scenarios, alternative sensing modalities are needed to provide timely and robust feedback. To this end, we explore the use of audio and inertial measurement unit (IMU) sensors to detect underlying anomalies in autonomous mobile robots, such as collisions and internal mechanical faults. Furthermore, to address the challenge of limited labeled anomaly data, we propose an unsupervised anomaly detection framework based on Mahalanobis Support Vector Data Description (M-SVDD). In contrast to conventional SVDD methods that rely on Euclidean distance and assume isotropic feature distributions, our approach employs the Mahalanobis distance to adaptively scale feature dimensions and capture inter-feature correlations, enabling more expressive decision boundaries. In addition, a reconstruction-based auxiliary branch is introduced to preserve feature diversity and prevent representation collapse, further enhancing the robustness of anomaly detection. Extensive experiments on a collected mobile robot dataset and four public datasets demonstrate the effectiveness of the proposed method, as shown in the video https://youtu.be/yh1tn6DDD4A. Code and dataset are available at https://github.com/jamesyang7/M-SVDD.
Via

May 09, 2025
Abstract:In this paper, we go beyond identifying anomalies only in structural terms and think about better anomaly detection motivated by anomaly causes. Most anomalies are regarded as the result of unpredictable defective forces from internal and external sources, and their opposite forces are sought to correct the anomalies. We introduced a Mechanics Complementary framework for 3D anomaly detection (MC4AD) to generate internal and external Corrective forces for each point. A Diverse Anomaly-Generation (DA-Gen) module is first proposed to simulate various anomalies. Then, we present a Corrective Force Prediction Network (CFP-Net) with complementary representations for point-level representation to simulate the different contributions of internal and external corrective forces. A combined loss was proposed, including a new symmetric loss and an overall loss, to constrain the corrective forces properly. As a highlight, we consider 3D anomaly detection in industry more comprehensively, creating a hierarchical quality control strategy based on a three-way decision and contributing a dataset named Anomaly-IntraVariance with intraclass variance to evaluate the model. On the proposed and existing five datasets, we obtained nine state-of-the-art performers with the minimum parameters and the fastest inference speed. The source is available at https://github.com/hzzzzzhappy/MC4AD
* 26 pages
Via

May 08, 2025
Abstract:Thoracolumbar stump ribs are one of the essential indicators of thoracolumbar transitional vertebrae or enumeration anomalies. While some studies manually assess these anomalies and describe the ribs qualitatively, this study aims to automate thoracolumbar stump rib detection and analyze their morphology quantitatively. To this end, we train a high-resolution deep-learning model for rib segmentation and show significant improvements compared to existing models (Dice score 0.997 vs. 0.779, p-value < 0.01). In addition, we use an iterative algorithm and piece-wise linear interpolation to assess the length of the ribs, showing a success rate of 98.2%. When analyzing morphological features, we show that stump ribs articulate more posteriorly at the vertebrae (-19.2 +- 3.8 vs -13.8 +- 2.5, p-value < 0.01), are thinner (260.6 +- 103.4 vs. 563.6 +- 127.1, p-value < 0.01), and are oriented more downwards and sideways within the first centimeters in contrast to full-length ribs. We show that with partially visible ribs, these features can achieve an F1-score of 0.84 in differentiating stump ribs from regular ones. We publish the model weights and masks for public use.
Via

May 08, 2025
Abstract:Lip segmentation plays a crucial role in various domains, such as lip synchronization, lipreading, and diagnostics. However, the effectiveness of supervised lip segmentation is constrained by the availability of lip contour in the training phase. A further challenge with lip segmentation is its reliance on image quality , lighting, and skin tone, leading to inaccuracies in the detected boundaries. To address these challenges, we propose a sequential lip segmentation method that integrates attention UNet and multidimensional input. We unravel the micro-patterns in facial images using local binary patterns to build multidimensional inputs. Subsequently, the multidimensional inputs are fed into sequential attention UNets, where the lip contour is reconstructed. We introduce a mask generation method that uses a few anatomical landmarks and estimates the complete lip contour to improve segmentation accuracy. This mask has been utilized in the training phase for lip segmentation. To evaluate the proposed method, we use facial images to segment the upper lips and subsequently assess lip-related facial anomalies in subjects with fetal alcohol syndrome (FAS). Using the proposed lip segmentation method, we achieved a mean dice score of 84.75%, and a mean pixel accuracy of 99.77% in upper lip segmentation. To further evaluate the method, we implemented classifiers to identify those with FAS. Using a generative adversarial network (GAN), we reached an accuracy of 98.55% in identifying FAS in one of the study populations. This method could be used to improve lip segmentation accuracy, especially around Cupid's bow, and shed light on distinct lip-related characteristics of FAS.
Via
