Abstract:CaMeL (Capabilities for Machine Learning) introduces a capability-based sandbox to mitigate prompt injection attacks in large language model (LLM) agents. While effective, CaMeL assumes a trusted user prompt, omits side-channel concerns, and incurs performance tradeoffs due to its dual-LLM design. This response identifies these issues and proposes engineering improvements to expand CaMeL's threat coverage and operational usability. We introduce: (1) prompt screening for initial inputs, (2) output auditing to detect instruction leakage, (3) a tiered-risk access model to balance usability and control, and (4) a verified intermediate language for formal guarantees. Together, these upgrades align CaMeL with best practices in enterprise security and support scalable deployment.
Abstract:As AI-generated imagery becomes ubiquitous, invisible watermarks have emerged as a primary line of defense for copyright and provenance. The newest watermarking schemes embed semantic signals - content-aware patterns that are designed to survive common image manipulations - yet their true robustness against adaptive adversaries remains under-explored. We expose a previously unreported vulnerability and introduce SemanticRegen, a three-stage, label-free attack that erases state-of-the-art semantic and invisible watermarks while leaving an image's apparent meaning intact. Our pipeline (i) uses a vision-language model to obtain fine-grained captions, (ii) extracts foreground masks with zero-shot segmentation, and (iii) inpaints only the background via an LLM-guided diffusion model, thereby preserving salient objects and style cues. Evaluated on 1,000 prompts across four watermarking systems - TreeRing, StegaStamp, StableSig, and DWT/DCT - SemanticRegen is the only method to defeat the semantic TreeRing watermark (p = 0.10 > 0.05) and reduces bit-accuracy below 0.75 for the remaining schemes, all while maintaining high perceptual quality (masked SSIM = 0.94 +/- 0.01). We further introduce masked SSIM (mSSIM) to quantify fidelity within foreground regions, showing that our attack achieves up to 12 percent higher mSSIM than prior diffusion-based attackers. These results highlight an urgent gap between current watermark defenses and the capabilities of adaptive, semantics-aware adversaries, underscoring the need for watermarking algorithms that are resilient to content-preserving regenerative attacks.
Abstract:As AI models scale to billions of parameters and operate with increasing autonomy, ensuring their safe, reliable operation demands engineering-grade security and assurance frameworks. This paper presents an enterprise-level, risk-aware, security-by-design approach for large-scale autonomous AI systems, integrating standardized threat metrics, adversarial hardening techniques, and real-time anomaly detection into every phase of the development lifecycle. We detail a unified pipeline - from design-time risk assessments and secure training protocols to continuous monitoring and automated audit logging - that delivers provable guarantees of model behavior under adversarial and operational stress. Case studies in national security, open-source model governance, and industrial automation demonstrate measurable reductions in vulnerability and compliance overhead. Finally, we advocate cross-sector collaboration - uniting engineering teams, standards bodies, and regulatory agencies - to institutionalize these technical safeguards within a resilient, end-to-end assurance ecosystem for the next generation of AI.
Abstract:The conversation around artificial intelligence (AI) often focuses on safety, transparency, accountability, alignment, and responsibility. However, AI security (i.e., the safeguarding of data, models, and pipelines from adversarial manipulation) underpins all of these efforts. This manuscript posits that AI security must be prioritized as a foundational layer. We present a hierarchical view of AI challenges, distinguishing security from safety, and argue for a security-first approach to enable trustworthy and resilient AI systems. We discuss core threat models, key attack vectors, and emerging defense mechanisms, concluding that a metric-driven approach to AI security is essential for robust AI safety, transparency, and accountability.
Abstract:The rapid evolution of artificial intelligence (AI) has ushered in a new era of integrated systems that merge computational prowess with human decision-making. In this paper, we introduce the concept of Orchestrated Distributed Intelligence (ODI), a novel paradigm that reconceptualizes AI not as isolated autonomous agents, but as cohesive, orchestrated networks that work in tandem with human expertise. ODI leverages advanced orchestration layers, multi-loop feedback mechanisms, and a high cognitive density framework to transform static, record-keeping systems into dynamic, action-oriented environments. Through a comprehensive review of multi-agent system literature, recent technological advances, and practical insights from industry forums, we argue that the future of AI lies in integrating distributed intelligence within human-centric workflows. This approach not only enhances operational efficiency and strategic agility but also addresses challenges related to scalability, transparency, and ethical decision-making. Our work outlines key theoretical implications and presents a practical roadmap for future research and enterprise innovation, aiming to pave the way for responsible and adaptive AI systems that drive sustainable innovation in human organizations.
Abstract:This paper examines the intricate interplay among AI safety, security, and governance by integrating technical systems engineering with principles of moral imagination and ethical philosophy. Drawing on foundational insights from Weapons of Math Destruction and Thinking in Systems alongside contemporary debates in AI ethics, we develop a comprehensive multi-dimensional framework designed to regulate AI technologies deployed in high-stakes domains such as defense, finance, healthcare, and education. Our approach combines rigorous technical analysis, quantitative risk assessment, and normative evaluation to expose systemic vulnerabilities inherent in opaque, black-box models. Detailed case studies, including analyses of Microsoft Tay (2016) and the UK A-Level Grading Algorithm (2020), demonstrate how security lapses, bias amplification, and lack of accountability can precipitate cascading failures that undermine public trust. We conclude by outlining targeted strategies for enhancing AI resilience through adaptive regulatory mechanisms, robust security protocols, and interdisciplinary oversight, thereby advancing the state of the art in ethical and technical AI governance.
Abstract:The rapid advancement of artificial intelligence (AI) has significantly expanded the attack surface for AI-driven cybersecurity threats, necessitating adaptive defense strategies. This paper introduces CyberSentinel, a unified, single-agent system for emergent threat detection, designed to identify and mitigate novel security risks in real time. CyberSentinel integrates: (1) Brute-force attack detection through SSH log analysis, (2) Phishing threat assessment using domain blacklists and heuristic URL scoring, and (3) Emergent threat detection via machine learning-based anomaly detection. By continuously adapting to evolving adversarial tactics, CyberSentinel strengthens proactive cybersecurity defense, addressing critical vulnerabilities in AI security.
Abstract:In many developing nations, a lack of poverty data prevents critical humanitarian organizations from responding to large-scale crises. Currently, socioeconomic surveys are the only method implemented on a large scale for organizations and researchers to measure and track poverty. However, the inability to collect survey data efficiently and inexpensively leads to significant temporal gaps in poverty data; these gaps severely limit the ability of organizational entities to address poverty at its root cause. We propose a transfer learning model based on surface temperature change and remote sensing data to extract features useful for predicting poverty rates. Machine learning, supported by data sources of poverty indicators, has the potential to estimate poverty rates accurately and within strict time constraints. Higher temperatures, as a result of climate change, have caused numerous agricultural obstacles, socioeconomic issues, and environmental disruptions, trapping families in developing countries in cycles of poverty. To find patterns of poverty relating to temperature that have the highest influence on spatial poverty rates, we use remote sensing data. The two-step transfer model predicts the temperature delta from high resolution satellite imagery and then extracts image features useful for predicting poverty. The resulting model achieved 80% accuracy on temperature prediction. This method takes advantage of abundant satellite and temperature data to measure poverty in a manner comparable to the existing survey methods and exceeds similar models of poverty prediction.