Abstract:High-resolution point clouds~(HRPCD) anomaly detection~(AD) plays a critical role in precision machining and high-end equipment manufacturing. Despite considerable 3D-AD methods that have been proposed recently, they still cannot meet the requirements of the HRPCD-AD task. There are several challenges: i) It is difficult to directly capture HRPCD information due to large amounts of points at the sample level; ii) The advanced transformer-based methods usually obtain anisotropic features, leading to degradation of the representation; iii) The proportion of abnormal areas is very small, which makes it difficult to characterize. To address these challenges, we propose a novel group-level feature-based network, called Group3AD, which has a significantly efficient representation ability. First, we design an Intercluster Uniformity Network~(IUN) to present the mapping of different groups in the feature space as several clusters, and obtain a more uniform distribution between clusters representing different parts of the point clouds in the feature space. Then, an Intracluster Alignment Network~(IAN) is designed to encourage groups within the cluster to be distributed tightly in the feature space. In addition, we propose an Adaptive Group-Center Selection~(AGCS) based on geometric information to improve the pixel density of potential anomalous regions during inference. The experimental results verify the effectiveness of our proposed Group3AD, which surpasses Reg3D-AD by the margin of 5\% in terms of object-level AUROC on Real3D-AD. We provide the code and supplementary information on our website: https://github.com/M-3LAB/Group3AD.
Abstract:Vision-and-language (VL) pre-training, which aims to learn a general representation of image-text pairs that can be transferred to various vision-and-language tasks. Compared with modeling uni-modal data, the main challenge of the VL model is: how to learn the cross-modal interaction from multimodal data, especially the fine-grained interaction. Existing works have shown that fully transformer-based models that adopt attention mechanisms to learn in-layer cross-model interaction can demonstrate impressive performance on various cross-modal downstream tasks. However, they ignored that the semantic information of the different modals at the same layer was not uniform, which leads to the cross-modal interaction collapsing into a limited multi-modal semantic information interaction. In this work, we propose the UNIMO-3 model, which has the capacity to simultaneously learn the multimodal in-layer interaction and cross-layer interaction. UNIMO-3 model can establish effective connections between different layers in a cross-modal encoder, and adaptively capture the interaction between two modalities at different levels. The experimental results show that our model achieves state-of-the-art performance in various downstream tasks, and through ablation study can prove that effective cross-layer learning improves the model's ability of multimodal representation.
Abstract:Vision-Language Pre-training (VLP) has achieved impressive performance on various cross-modal downstream tasks. However, most existing methods can only learn from aligned image-caption data and rely heavily on expensive regional features, which greatly limits their scalability and performance. In this paper, we propose an end-to-end unified-modal pre-training framework, namely UNIMO-2, for joint learning on both aligned image-caption data and unaligned image-only and text-only corpus. We build a unified Transformer model to jointly learn visual representations, textual representations and semantic alignment between images and texts. In particular, we propose to conduct grounded learning on both images and texts via a sharing grounded space, which helps bridge unaligned images and texts, and align the visual and textual semantic spaces on different types of corpora. The experiments show that our grounded learning method can improve textual and visual semantic alignment for improving performance on various cross-modal tasks. Moreover, benefiting from effective joint modeling of different types of corpora, our model also achieves impressive performance on single-modal visual and textual tasks. Our code and models are public at the UNIMO project page https://unimo-ptm.github.io/.
Abstract:Attribute reduction is one of the most important research topics in the theory of rough sets, and many rough sets-based attribute reduction methods have thus been presented. However, most of them are specifically designed for dealing with either labeled data or unlabeled data, while many real-world applications come in the form of partial supervision. In this paper, we propose a rough sets-based semi-supervised attribute reduction method for partially labeled data. Particularly, with the aid of prior class distribution information about data, we first develop a simple yet effective strategy to produce the proxy labels for unlabeled data. Then the concept of information granularity is integrated into the information-theoretic measure, based on which, a novel granular conditional entropy measure is proposed, and its monotonicity is proved in theory. Furthermore, a fast heuristic algorithm is provided to generate the optimal reduct of partially labeled data, which could accelerate the process of attribute reduction by removing irrelevant examples and excluding redundant attributes simultaneously. Extensive experiments conducted on UCI data sets demonstrate that the proposed semi-supervised attribute reduction method is promising and even compares favourably with the supervised methods on labeled data and unlabeled data with true labels in terms of classification performance.
Abstract:Existed pre-training methods either focus on single-modal tasks or multi-modal tasks, and cannot effectively adapt to each other. They can only utilize single-modal data (i.e. text or image) or limited multi-modal data (i.e. image-text pairs). In this work, we propose a unified-modal pre-training architecture, namely UNIMO, which can effectively adapt to both single-modal and multi-modal understanding and generation tasks. Large scale of free text corpus and image collections can be utilized to improve the capability of visual and textual understanding, and cross-modal contrastive learning (CMCL) is leveraged to align the textual and visual information into a unified semantic space over a corpus of image-text pairs. As the non-paired single-modal data is very rich, our model can utilize much larger scale of data to learn more generalizable representations. Moreover, the textual knowledge and visual knowledge can enhance each other in the unified semantic space. The experimental results show that UNIMO significantly improves the performance of several single-modal and multi-modal downstream tasks.
Abstract:Recently, heatmap regression has been widely explored in facial landmark detection and obtained remarkable performance. However, most of the existing heatmap regression-based facial landmark detection methods neglect to explore the high-order feature correlations, which is very important to learn more representative features and enhance shape constraints. Moreover, no explicit global shape constraints have been added to the final predicted landmarks, which leads to a reduction in accuracy. To address these issues, in this paper, we propose a Multi-order Multi-constraint Deep Network (MMDN) for more powerful feature correlations and shape constraints learning. Specifically, an Implicit Multi-order Correlating Geometry-aware (IMCG) model is proposed to introduce the multi-order spatial correlations and multi-order channel correlations for more discriminative representations. Furthermore, an Explicit Probability-based Boundary-adaptive Regression (EPBR) method is developed to enhance the global shape constraints and further search the semantically consistent landmarks in the predicted boundary for robust facial landmark detection. It's interesting to show that the proposed MMDN can generate more accurate boundary-adaptive landmark heatmaps and effectively enhance shape constraints to the predicted landmarks for faces with large pose variations and heavy occlusions. Experimental results on challenging benchmark datasets demonstrate the superiority of our MMDN over state-of-the-art facial landmark detection methods. The code has been publicly available at https://github.com/junwan2014/MMDN-master.
Abstract:Recently, convolutional neural networks (CNNs)-based facial landmark detection methods have achieved great success. However, most of existing CNN-based facial landmark detection methods have not attempted to activate multiple correlated facial parts and learn different semantic features from them that they can not accurately model the relationships among the local details and can not fully explore more discriminative and fine semantic features, thus they suffer from partial occlusions and large pose variations. To address these problems, we propose a cross-order cross-semantic deep network (CCDN) to boost the semantic features learning for robust facial landmark detection. Specifically, a cross-order two-squeeze multi-excitation (CTM) module is proposed to introduce the cross-order channel correlations for more discriminative representations learning and multiple attention-specific part activation. Moreover, a novel cross-order cross-semantic (COCS) regularizer is designed to drive the network to learn cross-order cross-semantic features from different activation for facial landmark detection. It is interesting to show that by integrating the CTM module and COCS regularizer, the proposed CCDN can effectively activate and learn more fine and complementary cross-order cross-semantic features to improve the accuracy of facial landmark detection under extremely challenging scenarios. Experimental results on challenging benchmark datasets demonstrate the superiority of our CCDN over state-of-the-art facial landmark detection methods.
Abstract:Heatmap regression (HR) has become one of the mainstream approaches for face alignment and has obtained promising results under constrained environments. However, when a face image suffers from large pose variations, heavy occlusions and complicated illuminations, the performances of HR methods degrade greatly due to the low resolutions of the generated landmark heatmaps and the exclusion of important high-order information that can be used to learn more discriminative features. To address the alignment problem for faces with extremely large poses and heavy occlusions, this paper proposes a heatmap subpixel regression (HSR) method and a multi-order cross geometry-aware (MCG) model, which are seamlessly integrated into a novel multi-order high-precision hourglass network (MHHN). The HSR method is proposed to achieve high-precision landmark detection by a well-designed subpixel detection loss (SDL) and subpixel detection technology (SDT). At the same time, the MCG model is able to use the proposed multi-order cross information to learn more discriminative representations for enhancing facial geometric constraints and context information. To the best of our knowledge, this is the first study to explore heatmap subpixel regression for robust and high-precision face alignment. The experimental results from challenging benchmark datasets demonstrate that our approach outperforms state-of-the-art methods in the literature.
Abstract:Recently, sentiment analysis has seen remarkable advance with the help of pre-training approaches. However, sentiment knowledge, such as sentiment words and aspect-sentiment pairs, is ignored in the process of pre-training, despite the fact that they are widely used in traditional sentiment analysis approaches. In this paper, we introduce Sentiment Knowledge Enhanced Pre-training (SKEP) in order to learn a unified sentiment representation for multiple sentiment analysis tasks. With the help of automatically-mined knowledge, SKEP conducts sentiment masking and constructs three sentiment knowledge prediction objectives, so as to embed sentiment information at the word, polarity and aspect level into pre-trained sentiment representation. In particular, the prediction of aspect-sentiment pairs is converted into multi-label classification, aiming to capture the dependency between words in a pair. Experiments on three kinds of sentiment tasks show that SKEP significantly outperforms strong pre-training baseline, and achieves new state-of-the-art results on most of the test datasets. We release our code at https://github.com/baidu/Senta.