Text classification is the process of categorizing text documents into predefined categories or labels.
AI-text detectors achieve high accuracy on in-domain benchmarks, but often struggle to generalize across different generation conditions such as unseen prompts, model families, or domains. While prior work has reported these generalization gaps, there are limited insights about the underlying causes. In this work, we present a systematic study aimed at explaining generalization behavior through linguistic analysis. We construct a comprehensive benchmark that spans 6 prompting strategies, 7 large language models (LLMs), and 4 domain datasets, resulting in a diverse set of human- and AI-generated texts. Using this dataset, we fine-tune classification-based detectors on various generation settings and evaluate their cross-prompt, cross-model, and cross-dataset generalization. To explain the performance variance, we compute correlations between generalization accuracies and feature shifts of 80 linguistic features between training and test conditions. Our analysis reveals that generalization performance for specific detectors and evaluation conditions is significantly associated with linguistic features such as tense usage and pronoun frequency.
Large Language Models (LLMs) exhibit strong multilingual capabilities, yet remain fundamentally constrained by the severe imbalance in global language resources. While over 7,000 languages are spoken worldwide, only a small subset (fewer than 100) has sufficient digital presence to meaningfully influence modern LLM training. This disparity leads to systematic underperformance, cultural misalignment, and limited accessibility for speakers of low-resource and extreme-low-resource languages. To address this gap, we introduce Bring Your Own Language (BYOL), a unified framework for scalable, language-aware LLM development tailored to each language's digital footprint. BYOL begins with a language resource classification that maps languages into four tiers (Extreme-Low, Low, Mid, High) using curated web-scale corpora, and uses this classification to select the appropriate integration pathway. For low-resource languages, we propose a full-stack data refinement and expansion pipeline that combines corpus cleaning, synthetic text generation, continual pretraining, and supervised finetuning. Applied to Chichewa and Maori, this pipeline yields language-specific LLMs that achieve approximately 12 percent average improvement over strong multilingual baselines across 12 benchmarks, while preserving English and multilingual capabilities via weight-space model merging. For extreme-low-resource languages, we introduce a translation-mediated inclusion pathway, and show on Inuktitut that a tailored machine translation system improves over a commercial baseline by 4 BLEU, enabling high-accuracy LLM access when direct language modeling is infeasible. Finally, we release human-translated versions of the Global MMLU-Lite benchmark in Chichewa, Maori, and Inuktitut, and make our codebase and models publicly available at https://github.com/microsoft/byol .
Surface electromyography (sEMG) provides a direct neural interface for decoding muscle activity and offers a promising foundation for keyboard-free text input in wearable and mixed-reality systems. Previous sEMG-to-text studies mainly focused on recognizing letters directly from sEMG signals, forming an important first step toward translating muscle activity into text. Building on this foundation, we present MyoText, a hierarchical framework that decodes sEMG signals to text through physiologically grounded intermediate stages. MyoText first classifies finger activations from multichannel sEMG using a CNN-BiLSTM-Attention model, applies ergonomic typing priors to infer letters, and reconstructs full sentences with a fine-tuned T5 transformer. This modular design mirrors the natural hierarchy of typing, linking muscle intent to language output and reducing the search space for decoding. Evaluated on 30 users from the emg2qwerty dataset, MyoText outperforms baselines by achieving 85.4% finger-classification accuracy, 5.4% character error rate (CER), and 6.5% word error rate (WER). Beyond accuracy gains, this methodology establishes a principled pathway from neuromuscular signals to text, providing a blueprint for virtual and augmented-reality typing interfaces that operate entirely without physical keyboards. By integrating ergonomic structure with transformer-based linguistic reasoning, MyoText advances the feasibility of seamless, wearable neural input for future ubiquitous computing environments.
Large Language Model (LLM) based summarization and text generation are increasingly used for producing and rewriting text, raising concerns about political framing in journalism where subtle wording choices can shape interpretation. Across nine state-of-the-art LLMs, we study political framing by testing whether LLMs' classification-based bias signals align with framing behavior in their generated summaries. We first compare few-shot ideology predictions against LEFT/CENTER/RIGHT labels. We then generate "steered" summaries under FAITHFUL, CENTRIST, LEFT, and RIGHT prompts, and score all outputs using a single fixed ideology evaluator. We find pervasive ideological center-collapse in both article-level ratings and generated text, indicating a systematic tendency toward centrist framing. Among evaluated models, Grok 4 is by far the most ideologically expressive generator, while Claude Sonnet 4.5 and Llama 3.1 achieve the strongest bias-rating performance among commercial and open-weight models, respectively.
Tracing connections between historical texts is an important part of intertextual research, enabling scholars to reconstruct the virtual library of a writer and identify the sources influencing their creative process. These intertextual links manifest in diverse forms, ranging from direct verbatim quotations to subtle allusions and paraphrases disguised by morphological variation. Language models offer a promising path forward due to their capability of capturing semantic similarity beyond lexical overlap. However, the development of new methods for this task is held back by the scarcity of standardized benchmarks and easy-to-use datasets. We address this gap by introducing Loci Similes, a benchmark for Latin intertextuality detection comprising of a curated dataset of ~172k text segments containing 545 expert-verified parallels linking Late Antique authors to a corpus of classical authors. Using this data, we establish baselines for retrieval and classification of intertextualities with state-of-the-art LLMs.
Identifying the strengths and limitations of a research paper is a core component of any literature review. However, traditional summaries reflect only the authors' self-presented perspective. Analyzing how other researchers discuss and cite the paper can offer a deeper, more practical understanding of its contributions and shortcomings. In this research, we introduce SECite, a novel approach for evaluating scholarly impact through sentiment analysis of citation contexts. We develop a semi-automated pipeline to extract citations referencing nine research papers and apply advanced natural language processing (NLP) techniques with unsupervised machine learning to classify these citation statements as positive or negative. Beyond sentiment classification, we use generative AI to produce sentiment-specific summaries that capture the strengths and limitations of each target paper, derived both from clustered citation groups and from the full text. Our findings reveal meaningful patterns in how the academic community perceives these works, highlighting areas of alignment and divergence between external citation feedback and the authors' own presentation. By integrating citation sentiment analysis with LLM-based summarization, this study provides a comprehensive framework for assessing scholarly contributions.
Vision-Language Pre-training (VLP) models demonstrate strong performance across various downstream tasks by learning from large-scale image-text pairs through contrastive pretraining. The release of extensive English image-text datasets (e.g., COYO-700M and LAION-400M) has enabled widespread adoption of models such as CLIP and SigLIP in tasks including cross-modal retrieval and image captioning. However, the advancement of Chinese vision-language pretraining has substantially lagged behind, due to the scarcity of high-quality Chinese image-text data. To address this gap, we develop a comprehensive pipeline for constructing a high-quality Chinese cross-modal dataset. As a result, we propose DanQing, which contains 100 million image-text pairs collected from Common Crawl. Different from existing datasets, DanQing is curated through a more rigorous selection process, yielding superior data quality. Moreover, DanQing is primarily built from 2024-2025 web data, enabling models to better capture evolving semantic trends and thus offering greater practical utility. We compare DanQing with existing datasets by continual pre-training of the SigLIP2 model. Experimental results show that DanQing consistently achieves superior performance across a range of Chinese downstream tasks, including zero-shot classification, cross-modal retrieval, and LMM-based evaluations. To facilitate further research in Chinese vision-language pre-training, we will open-source the DanQing dataset under the Creative Common CC-BY 4.0 license.
In-context learning (ICL) has become a prominent paradigm to rapidly customize LLMs to new tasks without fine-tuning. However, despite the empirical evidence of its usefulness, we still do not truly understand how ICL works. In this paper, we compare the behavior of in-context learning with supervised classifiers trained on ICL demonstrations to investigate three research questions: (1) Do LLMs with ICL behave similarly to classifiers trained on the same examples? (2) If so, which classifiers are closer, those based on gradient descent (GD) or those based on k-nearest neighbors (kNN)? (3) When they do not behave similarly, what conditions are associated with differences in behavior? Using text classification as a use case, with six datasets and three LLMs, we observe that LLMs behave similarly to these classifiers when the relevance of demonstrations is high. On average, ICL is closer to kNN than logistic regression, giving empirical evidence that the attention mechanism behaves more similarly to kNN than GD. However, when demonstration relevance is low, LLMs perform better than these classifiers, likely because LLMs can back off to their parametric memory, a luxury these classifiers do not have.
The scarcity of annotated datasets for clinical information extraction in non-English languages hinders the evaluation of large language model (LLM)-based methods developed primarily in English. In this study, we present the first comprehensive bilingual evaluation of LLMs for the clinical Relation Extraction (RE) task in both English and Turkish. To facilitate this evaluation, we introduce the first English-Turkish parallel clinical RE dataset, derived and carefully curated from the 2010 i2b2/VA relation classification corpus. We systematically assess a diverse set of prompting strategies, including multiple in-context learning (ICL) and Chain-of-Thought (CoT) approaches, and compare their performance to fine-tuned baselines such as PURE. Furthermore, we propose Relation-Aware Retrieval (RAR), a novel in-context example selection method based on contrastive learning, that is specifically designed to capture both sentence-level and relation-level semantics. Our results show that prompting-based LLM approaches consistently outperform traditional fine-tuned models. Moreover, evaluations for English performed better than their Turkish counterparts across all evaluated LLMs and prompting techniques. Among ICL methods, RAR achieves the highest performance, with Gemini 1.5 Flash reaching a micro-F1 score of 0.906 in English and 0.888 in Turkish. Performance further improves to 0.918 F1 in English when RAR is combined with a structured reasoning prompt using the DeepSeek-V3 model. These findings highlight the importance of high-quality demonstration retrieval and underscore the potential of advanced retrieval and prompting techniques to bridge resource gaps in clinical natural language processing.
Adapting language models to the clinical domain through continued pretraining and fine-tuning requires costly retraining for each new model generation. We propose Cross-Architecture Proxy Tuning (CAPT), a model-ensembling approach that enables training-free adaptation of state-of-the-art general-domain models using existing clinical models. CAPT supports models with disjoint vocabularies, leveraging contrastive decoding to selectively inject clinically relevant signals while preserving the general-domain model's reasoning and fluency. On six clinical classification and text-generation tasks, CAPT with a new-generation general-domain model and an older-generation clinical model consistently outperforms both models individually and state-of-the-art ensembling approaches (average +17.6% over UniTE, +41.4% over proxy tuning across tasks). Through token-level analysis and physician case studies, we demonstrate that CAPT amplifies clinically actionable language, reduces context errors, and increases clinical specificity.