What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Sep 19, 2025
Abstract:Identification and further analysis of radar emitters in a contested environment requires detection and separation of incoming signals. If they arrive from the same direction and at similar frequencies, deinterleaving them remains challenging. A solution to overcome this limitation becomes increasingly important with the advancement of emitter capabilities. We propose treating the problem as blind source separation in time domain and apply supervisedly trained neural networks to extract the underlying signals from the received mixture. This allows us to handle highly overlapping and also continuous wave (CW) signals from both radar and communication emitters. We make use of advancements in the field of audio source separation and extend a current state-of-the-art model with the objective of deinterleaving arbitrary radio frequency (RF) signals. Results show, that our approach is capable of separating two unknown waveforms in a given frequency band with a single channel receiver.
* 2022 23rd International Radar Symposium (IRS)
Via

Sep 19, 2025
Abstract:Deep learning-based Sound Event Localization and Detection (SELD) systems degrade significantly on real-world, long-tailed datasets. Standard regression losses bias learning toward frequent classes, causing rare events to be systematically under-recognized. To address this challenge, we introduce MAGENTA (Magnitude And Geometry-ENhanced Training Approach), a unified loss function that counteracts this bias within a physically interpretable vector space. MAGENTA geometrically decomposes the regression error into radial and angular components, enabling targeted, rarity-aware penalties and strengthened directional modeling. Empirically, MAGENTA substantially improves SELD performance on imbalanced real-world data, providing a principled foundation for a new class of geometry-aware SELD objectives. Code is available at: https://github.com/itsjunwei/MAGENTA_ICASSP
* This work has been submitted to IEEE ICASSP 2026 for possible
publication
Via

Sep 10, 2025
Abstract:Background: Coronary Artery Disease (CAD) is one of the leading causes of death worldwide. Invasive Coronary Angiography (ICA), regarded as the gold standard for CAD diagnosis, necessitates precise vessel segmentation and stenosis detection. However, ICA images are typically characterized by low contrast, high noise levels, and complex, fine-grained vascular structures, which pose significant challenges to the clinical adoption of existing segmentation and detection methods. Objective: This study aims to improve the accuracy of coronary artery segmentation and stenosis detection in ICA images by integrating multi-scale structural priors, state-space-based long-range dependency modeling, and frequency-domain detail enhancement strategies. Methods: We propose SFD-Mamba2Net, an end-to-end framework tailored for ICA-based vascular segmentation and stenosis detection. In the encoder, a Curvature-Aware Structural Enhancement (CASE) module is embedded to leverage multi-scale responses for highlighting slender tubular vascular structures, suppressing background interference, and directing attention toward vascular regions. In the decoder, we introduce a Progressive High-Frequency Perception (PHFP) module that employs multi-level wavelet decomposition to progressively refine high-frequency details while integrating low-frequency global structures. Results and Conclusions: SFD-Mamba2Net consistently outperformed state-of-the-art methods across eight segmentation metrics, and achieved the highest true positive rate and positive predictive value in stenosis detection.
Via

Sep 10, 2025
Abstract:This paper introduces a novel method for end-to-end crowd detection that leverages object density information to enhance existing transformer-based detectors. We present CrowdQuery (CQ), whose core component is our CQ module that predicts and subsequently embeds an object density map. The embedded density information is then systematically integrated into the decoder. Existing density map definitions typically depend on head positions or object-based spatial statistics. Our method extends these definitions to include individual bounding box dimensions. By incorporating density information into object queries, our method utilizes density-guided queries to improve detection in crowded scenes. CQ is universally applicable to both 2D and 3D detection without requiring additional data. Consequently, we are the first to design a method that effectively bridges 2D and 3D detection in crowded environments. We demonstrate the integration of CQ into both a general 2D and 3D transformer-based object detector, introducing the architectures CQ2D and CQ3D. CQ is not limited to the specific transformer models we selected. Experiments on the STCrowd dataset for both 2D and 3D domains show significant performance improvements compared to the base models, outperforming most state-of-the-art methods. When integrated into a state-of-the-art crowd detector, CQ can further improve performance on the challenging CrowdHuman dataset, demonstrating its generalizability. The code is released at https://github.com/mdaehl/CrowdQuery.
* 8 pages, 5 figures, accepted by IROS 2025
Via

Sep 03, 2025
Abstract:Benchmarking multi-object tracking and object detection model performance is an essential step in machine learning model development, as it allows researchers to evaluate model detection and tracker performance on human-generated 'test' data, facilitating consistent comparisons between models and trackers and aiding performance optimization. In this study, a novel benchmark video dataset was developed and used to assess the performance of several Monterey Bay Aquarium Research Institute object detection models and a FathomNet single-class object detection model together with several trackers. The dataset consists of four video sequences representing midwater and benthic deep-sea habitats. Performance was evaluated using Higher Order Tracking Accuracy, a metric that balances detection, localization, and association accuracy. To the best of our knowledge, this is the first publicly available benchmark for multi-object tracking in deep-sea video footage. We provide the benchmark data, a clearly documented workflow for generating additional benchmark videos, as well as example Python notebooks for computing metrics.
Via

Sep 09, 2025
Abstract:Enabling robots to grasp objects specified through natural language is essential for effective human-robot interaction, yet it remains a significant challenge. Existing approaches often struggle with open-form language expressions and typically assume unambiguous target objects without duplicates. Moreover, they frequently rely on costly, dense pixel-wise annotations for both object grounding and grasp configuration. We present Attribute-based Object Grounding and Robotic Grasping (OGRG), a novel framework that interprets open-form language expressions and performs spatial reasoning to ground target objects and predict planar grasp poses, even in scenes containing duplicated object instances. We investigate OGRG in two settings: (1) Referring Grasp Synthesis (RGS) under pixel-wise full supervision, and (2) Referring Grasp Affordance (RGA) using weakly supervised learning with only single-pixel grasp annotations. Key contributions include a bi-directional vision-language fusion module and the integration of depth information to enhance geometric reasoning, improving both grounding and grasping performance. Experiment results show that OGRG outperforms strong baselines in tabletop scenes with diverse spatial language instructions. In RGS, it operates at 17.59 FPS on a single NVIDIA RTX 2080 Ti GPU, enabling potential use in closed-loop or multi-object sequential grasping, while delivering superior grounding and grasp prediction accuracy compared to all the baselines considered. Under the weakly supervised RGA setting, OGRG also surpasses baseline grasp-success rates in both simulation and real-robot trials, underscoring the effectiveness of its spatial reasoning design. Project page: https://z.umn.edu/ogrg
* Accepted to 2025 IEEE-RAS 24th International Conference on Humanoid
Robots
Via

Sep 04, 2025
Abstract:Existing RGB-Event detection methods process the low-information regions of both modalities (background in images and non-event regions in event data) uniformly during feature extraction and fusion, resulting in high computational costs and suboptimal performance. To mitigate the computational redundancy during feature extraction, researchers have respectively proposed token sparsification methods for the image and event modalities. However, these methods employ a fixed number or threshold for token selection, hindering the retention of informative tokens for samples with varying complexity. To achieve a better balance between accuracy and efficiency, we propose FocusMamba, which performs adaptive collaborative sparsification of multimodal features and efficiently integrates complementary information. Specifically, an Event-Guided Multimodal Sparsification (EGMS) strategy is designed to identify and adaptively discard low-information regions within each modality by leveraging scene content changes perceived by the event camera. Based on the sparsification results, a Cross-Modality Focus Fusion (CMFF) module is proposed to effectively capture and integrate complementary features from both modalities. Experiments on the DSEC-Det and PKU-DAVIS-SOD datasets demonstrate that the proposed method achieves superior performance in both accuracy and efficiency compared to existing methods. The code will be available at https://github.com/Zizzzzzzz/FocusMamba.
Via

Sep 18, 2025
Abstract:In this paper, we propose a multi-label classification framework to detect multiple speaking styles in a speech sample. Unlike previous studies that have primarily focused on identifying a single target style, our framework effectively captures various speaker characteristics within a unified structure, making it suitable for generalized human-computer interaction applications. The proposed framework integrates cross-attention mechanisms within a transformer decoder to extract salient features associated with each target label from the input speech. To mitigate the data imbalance inherent in multi-label speech datasets, we employ a data augmentation technique based on a speech generation model. We validate our model's effectiveness through multiple objective evaluations on seen and unseen corpora. In addition, we provide an analysis of the influence of human perception on classification accuracy by considering the impact of human labeling agreement on model performance.
* Accepted to INTERSPEECH 2025
Via

Sep 17, 2025
Abstract:Object hallucination in Large Vision-Language Models (LVLMs) significantly impedes their real-world applicability. As the primary component for accurately interpreting visual information, the choice of visual encoder is pivotal. We hypothesize that the diverse training paradigms employed by different visual encoders instill them with distinct inductive biases, which leads to their diverse hallucination performances. Existing benchmarks typically focus on coarse-grained hallucination detection and fail to capture the diverse hallucinations elaborated in our hypothesis. To systematically analyze these effects, we introduce VHBench-10, a comprehensive benchmark with approximately 10,000 samples for evaluating LVLMs across ten fine-grained hallucination categories. Our evaluations confirm encoders exhibit unique hallucination characteristics. Building on these insights and the suboptimality of simple feature fusion, we propose VisionWeaver, a novel Context-Aware Routing Network. It employs global visual features to generate routing signals, dynamically aggregating visual features from multiple specialized experts. Comprehensive experiments confirm the effectiveness of VisionWeaver in significantly reducing hallucinations and improving overall model performance.
* Accepted by EMNLP2025 Finding
Via

Sep 11, 2025
Abstract:Detecting incipient slip enables early intervention to prevent object slippage and enhance robotic manipulation safety. However, deploying such systems on edge platforms remains challenging, particularly due to energy constraints. This work presents a neuromorphic tactile sensing system based on the NeuroTac sensor with an extruding papillae-based skin and a spiking convolutional neural network (SCNN) for slip-state classification. The SCNN model achieves 94.33% classification accuracy across three classes (no slip, incipient slip, and gross slip) in slip conditions induced by sensor motion. Under the dynamic gravity-induced slip validation conditions, after temporal smoothing of the SCNN's final-layer spike counts, the system detects incipient slip at least 360 ms prior to gross slip across all trials, consistently identifying incipient slip before gross slip occurs. These results demonstrate that this neuromorphic system has stable and responsive incipient slip detection capability.
* 7 pages, 12 figures. Submitted to IEEE Robotics and Automation
Letters (RAL), under review
Via
