Abstract:This study presents a novel demographics informed deep learning framework designed to forecast urban spatial transformations by jointly modeling geographic satellite imagery, socio-demographics, and travel behavior dynamics. The proposed model employs an encoder-decoder architecture with temporal gated residual connections, integrating satellite imagery and demographic data to accurately forecast future spatial transformations. The study also introduces a demographics prediction component which ensures that predicted satellite imagery are consistent with demographic features, significantly enhancing physiological realism and socioeconomic accuracy. The framework is enhanced by a proposed multi-objective loss function complemented by a semantic loss function that balances visual realism with temporal coherence. The experimental results from this study demonstrate the superior performance of the proposed model compared to state-of-the-art models, achieving higher structural similarity (SSIM: 0.8342) and significantly improved demographic consistency (Demo-loss: 0.14 versus 0.95 and 0.96 for baseline models). Additionally, the study validates co-evolutionary theories of urban development, demonstrating quantifiable bidirectional influences between built environment characteristics and population patterns. The study also contributes a comprehensive multimodal dataset pairing satellite imagery sequences (2012-2023) with corresponding demographic and travel behavior attributes, addressing existing gaps in urban and transportation planning resources by explicitly connecting physical landscape evolution with socio-demographic patterns.
Abstract:Distracted driving continues to be a significant cause of road traffic injuries and fatalities worldwide, even with advancements in driver monitoring technologies. Recent developments in machine learning (ML) and deep learning (DL) have primarily focused on visual data to detect distraction, often neglecting the complex, multimodal nature of driver behavior. This systematic review assesses 74 peer-reviewed studies from 2019 to 2024 that utilize ML/DL techniques for distracted driving detection across visual, sensor-based, multimodal, and emerging modalities. The review highlights a significant prevalence of visual-only models, particularly convolutional neural networks (CNNs) and temporal architectures, which achieve high accuracy but show limited generalizability in real-world scenarios. Sensor-based and physiological models provide complementary strengths by capturing internal states and vehicle dynamics, while emerging techniques, such as auditory sensing and radio frequency (RF) methods, offer privacy-aware alternatives. Multimodal architecture consistently surpasses unimodal baselines, demonstrating enhanced robustness, context awareness, and scalability by integrating diverse data streams. These findings emphasize the need to move beyond visual-only approaches and adopt multimodal systems that combine visual, physiological, and vehicular cues while keeping in checking the need to balance computational requirements. Future research should focus on developing lightweight, deployable multimodal frameworks, incorporating personalized baselines, and establishing cross-modality benchmarks to ensure real-world reliability in advanced driver assistance systems (ADAS) and road safety interventions.
Abstract:Accurately predicting the Pavement Condition Index (PCI), a measure of roadway conditions, from pavement images is crucial for infrastructure maintenance. This study proposes an enhanced version of the Residual Network (ResNet50) architecture, integrated with a Convolutional Block Attention Module (CBAM), to predict PCI directly from pavement images without additional annotations. By incorporating CBAM, the model autonomously prioritizes critical features within the images, improving prediction accuracy. Compared to the original baseline ResNet50 and DenseNet161 architectures, the enhanced ResNet50-CBAM model achieved a significantly lower mean absolute percentage error (MAPE) of 58.16%, compared to the baseline models that achieved 70.76% and 65.48% respectively. These results highlight the potential of using attention mechanisms to refine feature extraction, ultimately enabling more accurate and efficient assessments of pavement conditions. This study emphasizes the importance of targeted feature refinement in advancing automated pavement analysis through attention mechanisms.
Abstract:Transportation planning plays a critical role in shaping urban development, economic mobility, and infrastructure sustainability. However, traditional planning methods often struggle to accurately predict long-term urban growth and transportation demands. This may sometimes result in infrastructure demolition to make room for current transportation planning demands. This study integrates a Temporal Fusion Transformer to predict travel patterns from demographic data with a Generative Adversarial Network to predict future urban settings through satellite imagery. The framework achieved a 0.76 R-square score in travel behavior prediction and generated high-fidelity satellite images with a Structural Similarity Index of 0.81. The results demonstrate that integrating predictive analytics and spatial visualization can significantly improve the decision-making process, fostering more sustainable and efficient urban development. This research highlights the importance of data-driven methodologies in modern transportation planning and presents a step toward optimizing infrastructure placement, capacity, and long-term viability.