Abstract:Automated pavement defect detection often struggles to generalize across diverse real-world conditions due to the lack of standardized datasets. Existing datasets differ in annotation styles, distress type definitions, and formats, limiting their integration for unified training. To address this gap, we introduce a comprehensive benchmark dataset that consolidates multiple publicly available sources into a standardized collection of 52747 images from seven countries, with 135277 bounding box annotations covering 13 distinct distress types. The dataset captures broad real-world variation in image quality, resolution, viewing angles, and weather conditions, offering a unique resource for consistent training and evaluation. Its effectiveness was demonstrated through benchmarking with state-of-the-art object detection models including YOLOv8-YOLOv12, Faster R-CNN, and DETR, which achieved competitive performance across diverse scenarios. By standardizing class definitions and annotation formats, this dataset provides the first globally representative benchmark for pavement defect detection and enables fair comparison of models, including zero-shot transfer to new environments.




Abstract:Transportation planning plays a critical role in shaping urban development, economic mobility, and infrastructure sustainability. However, traditional planning methods often struggle to accurately predict long-term urban growth and transportation demands. This may sometimes result in infrastructure demolition to make room for current transportation planning demands. This study integrates a Temporal Fusion Transformer to predict travel patterns from demographic data with a Generative Adversarial Network to predict future urban settings through satellite imagery. The framework achieved a 0.76 R-square score in travel behavior prediction and generated high-fidelity satellite images with a Structural Similarity Index of 0.81. The results demonstrate that integrating predictive analytics and spatial visualization can significantly improve the decision-making process, fostering more sustainable and efficient urban development. This research highlights the importance of data-driven methodologies in modern transportation planning and presents a step toward optimizing infrastructure placement, capacity, and long-term viability.